A. Lamaire

Thermal Engineering of Metal-Organic Frameworks for Adsorption Applications: A Molecular Simulations Perspective

J. Wieme, S. Vandenbrande, A. Lamaire, V. Kapil, L. Vanduyfhuys, V. Van Speybroeck
ACS Applied Materials & Interfaces
11 (42), 38697-38707
2019
A1

Abstract 

Thermal engineering of metal-organic frameworks (MOFs) for adsorption-based applications is very topical in view of their industrial potential, especially since heat management and thermal stability have been identified as important obstacles. Hence, a fundamental understanding of the structural and chemical features underpinning their intrinsic thermal properties is highly sought-after. Herein, we investigate the nanoscale behavior of a diverse set of frameworks using molecular simulation techniques and critically compare properties such as thermal conductivity, heat capacity and thermal expansion with other material classes. Furthermore, we propose a hypothetical thermodynamic cycle to estimate the temperature rise associated with adsorption for the most important greenhouse and energy-related gases (CO2 and CH4). This macroscopic response on the heat of adsorption connects the intrinsic thermal properties with the adsorption properties, and allows us to evaluate their importance.

On the importance of anharmonicities and nuclear quantum effects in modelling the structural properties and thermal expansion of MOF-5

A. Lamaire, J. Wieme, S.M.J. Rogge, M. Waroquier, V. Van Speybroeck
Journal of Chemical Physics
150 (9), 094503
2019
A1

Abstract 

In this article, we investigate the influence of anharmonicities and nuclear quantum effects (NQEs) in modelling the structural properties and thermal expansion of the empty MOF-5 metal-organic framework. To introduce NQEs in classical molecular dynamics simulations, two different methodologies are considered, comparing the approximate, but computationally cheap, method of generalised Langevin equation thermostatting to the more advanced, computationally demanding path integral molecular dynamics technique. For both methodologies, similar results were obtained for all the properties under investigation. The structural properties of MOF-5, probed by means of radial distribution functions (RDFs), show some distinct differences with respect to a classical description. Besides a broadening of the RDF peaks under the influence of quantum fluctuations, a different temperature dependence is also observed due to a dominant zero-point energy (ZPE) contribution. For the thermal expansion of MOF-5, by contrast, NQEs appear to be only of secondary importance with respect to an adequate modelling of the anharmonicities of the potential energy surface (PES), as demonstrated by the use of two differently parametrised force fields. Despite the small effect in the temperature dependence of the volume of MOF-5, NQEs do however significantly affect the absolute volume of MOF-5, in which the ZPE resulting from the intertwining of NQEs and anharmonicities plays a crucial role. A sufficiently accurate description of the PES is therefore prerequisite when modelling NQEs.

The influence of nuclear quantum effects on proton hopping kinetics in the H-SSZ-13 zeolite through ab initio derived machine learning potentials

ISBN/ISSN:
Talk

Conference / event / venue 

NCCC XXIII
Noordwijkerhout,The Netherlands
Monday, 9 May, 2022 to Wednesday, 11 May, 2022

Pages

Subscribe to RSS - A. Lamaire