R. Goeminne

Charting the Complete Thermodynamic Landscape of Gas Adsorption for a Responsive Metal-Organic Framework

R. Goeminne, S. Krause, S. Kaskel, T. Verstraelen, J.D. Evans
JACS (Journal of the American Chemical Society)
143, 11, 4143–4147


New nanoporous materials have the ability to revolutionize adsorption and separation processes. In particular, materials with adaptive cavities have high selectivity and may display previously undiscovered phenomena, such as negative gas adsorption (NGA), in which gas is released from the framework upon an increase in pressure. Although the thermodynamic driving force behind this and many other counterintuitive adsorption phenomena have been thoroughly investigated in recent years, several experimental observations remain difficult to explain. This necessitates a comprehensive analysis of gas adsorption akin to the conformational free energy landscapes used to understand the function of proteins. We have constructed the complete thermodynamic landscape of methane adsorption on DUT-49. Traversing this complex landscape reproduces the experimentally observed structural transitions, temperature dependence, and the hysteresis between adsorption and desorption. The complete thermodynamic description presented here provides unparalleled insight into adsorption and provides a framework to understand other adsorbents that challenge our preconceptions.

Modeling Gas Adsorption in Flexible Metal–Organic Frameworks via Hybrid Monte Carlo / Molecular Dynamics Schemes

S.M.J. Rogge, R. Goeminne, R. Demuynck, J.J. Gutiérrez-Sevillano, S. Vandenbrande, L. Vanduyfhuys, M. Waroquier, T. Verstraelen, V. Van Speybroeck
Advanced Theory and Simulations
2 (4), 1800177


Herein, a hybrid Monte Carlo (MC)/molecular dynamics (MD) simulation protocol that properly accounts for the extraordinary structural flexibility of metal–organic frameworks (MOFs) is developed and validated. This is vital to accurately predict gas adsorption isotherms and guest‐induced flexibility of these materials. First, the performance of three recent models to predict adsorption isotherms and flexibility in MOFs is critically investigated. While these methods succeed in providing qualitative insight in the gas adsorption process in MOFs, their accuracy remains limited as the intrinsic flexibility of these materials is very hard to account for. To overcome this challenge, a hybrid MC/MD simulation protocol that is specifically designed to handle the flexibility of the adsorbent, including the shape flexibility, is introduced, thereby unifying the strengths of the previous models. It is demonstrated that the application of this new protocol to the adsorption of neon, argon, xenon, methane, and carbon dioxide in MIL‐53(Al), a prototypical flexible MOF, substantially decreases the inaccuracy of the obtained adsorption isotherms and predicted guest‐induced flexibility. As a result, this method is ideally suited to rationalize the adsorption performance of flexible nanoporous materials at the molecular level, paving the way for the conscious design of MOFs as industrial adsorbents.

Gold Open Access

Accurately determining the transition temperature of metal halide perovskites via RPA calculations and phase-transferable machine learning potentials


Conference / event / venue 

Brussels, Belgium
Monday, 29 August, 2022 to Friday, 2 September, 2022

The influence of nuclear quantum effects on proton hopping kinetics in the H-SSZ-13 zeolite through ab initio derived machine learning potentials


Conference / event / venue 

Noordwijkerhout,The Netherlands
Monday, 9 May, 2022 to Wednesday, 11 May, 2022


Subscribe to RSS - R. Goeminne