V. Van Speybroeck

Unexpected formation of 2,2-dichloro-N-(chloromethyl)acetamides during attempted Staudinger 2,2-dichloro-β-lactam synthesis

S. Deketelaere, E. Van den Broeck, L. Cools, D. Deturck, H. Naeyaert, K. Van Hecke, C. Stevens, V. Van Speybroeck, M. D'Hooghe
European Journal of Organic Chemistry
2021
A1

Abstract 

In the quest for 3,3-dichloro-β-lactam building blocks, the serendipitous formation of 2,2-dichloro- N -(chloromethyl)acetamides was observed. This peculiar reactivity was investigated in detail, both experimentally and computationally by means of Density Functional Theory (DFT) calculations. 2,2-Dichloro-N-(chloromethyl)acetamides were thus shown to be formed experimentally through reaction of 2,2-dichloroacetyl chloride with glyceraldehyde-derived imines, i.e. (2,2-dimethyl-1,3-dioxolan-4-yl)methanimines, bearing aromatic N-substituents, in the presence as well as in the absence of a base. Deployment of aliphatic imines, however, resulted in complex reaction mixtures, pointing to the importance of a stabilizing aromatic substituent at nitrogen. The DFT results indicate that the substituents can alter the governing equilibria on the one hand and intrinsic barrier heights for the different routes on the other hand, showing that these are controlling the reaction outcome. Furthermore, the 2,2-dichloro- N -(chloromethyl)acetamides proved to be rather unstable in solution and thus difficult to isolate. Nonetheless, their molecular structure was confirmed by means of NMR analysis of several purified analogs and X-ray study of a 4-methoxyphenyl derivative.

Mobility and Reactivity of Cu+ Species in Cu-CHA Catalysts under NH3-SCR-NOx Reaction Conditions: Insights from AIMD Simulations

R. Millan, P. Cnudde, V. Van Speybroeck, M. Boronat
JACS Au (Journal of the American Chemical Society)
2021
A1

Abstract 

The mobility of the copper cations acting as active sites for the selective catalytic reduction of nitrogen oxides with ammonia in Cu-CHA catalysts varies with temperature and feed composition. Herein, the migration of [Cu(NH3)2]+ complexes between two adjacent cavities of the chabazite structure, including other reactant molecules (NO, O2, H2O, and NH3), in the initial and final cavities is investigated using ab initio molecular dynamics (AIMD) simulations combined with enhanced sampling techniques to describe hopping events from one cage to the other. We find that such diffusion is only significantly hindered by the presence of excess NH3 or NO in the initial cavity, since both reactants form with [Cu(NH3)2]+ stable intermediates which are too bulky to cross the 8-ring windows connecting the cavities. The presence of O2 modifies strongly the interaction of NO with Cu+. At low temperatures, we observe NO detachment from Cu+ and increased mobility of the [Cu(NH3)2]+ complex, while at high temperatures, NO reacts spontaneously with O2 to form NO2. The present simulations give evidence for recent experimental observations, namely, an NH3 inhibition effect on the SCR reaction at low temperatures, and transport limitations of NO and NH3 at high temperatures. Our first principle simulations mimicking operating conditions support the existence of two different reaction mechanisms operating at low and high temperatures, the former involving dimeric Cu(NH3)2-O2-Cu(NH3)2 species and the latter occurring by direct NO oxidation to NO2 in one single cavity.

Interfacial study of clathrates confined in reversed silica pores

P. M. Mileo, S.M.J. Rogge, M. Houlleberghs, E. Breynaert, J.A. Martens, V. Van Speybroeck
Journal of Materials Chemistry A
9(38), 21835-21844
2021
A1

Abstract 

Storing methane in clathrates is one of the most promising alternatives for transporting natural gas (NG) as it offers similar gas densities to liquefied and compressed NG while offering lower safety risks. However, the practical use of clathrates is limited given the extremely low temperatures and high pressures necessary to form these structures. Therefore, it has been suggested to confine clathrates in nanoporous materials, as this can facilitate clathrate's formation conditions while preserving its CH4 volumetric storage. Yet, the choice of nanoporous materials to be employed as the clathrate growing platform is still rather arbitrary. Herein, we tackle this challenge in a systematic way by computationally exploring the stability of clathrates confined in alkyl-grafted silica materials with different pore sizes, ligand densities and ligand types. Based on our findings, we are able to propose key design criteria for nanoporous materials favoring the stability of a neighbouring clathrate phase, namely large pore sizes, high ligand densities, and smooth pore walls. We hope that the atomistic insight provided in this work will guide and facilitate the development of new nanomaterials designed to promote the formation of clathrates.

Gold Open Access

Large-Scale Molecular Dynamics Simulations Reveal New Insights Into the Phase Transition Mechanisms in MIL-53(Al)

S. Vandenhaute, S.M.J. Rogge, V. Van Speybroeck
Frontiers in Chemistry
9: 699
2021
A1

Abstract 

Soft porous crystals have the ability to undergo large structural transformations upon exposure to external stimuli while maintaining their long-range structural order, and the size of the crystal plays an important role in this flexible behavior. Computational modeling has the potential to unravel mechanistic details of these phase transitions, provided that the models are representative for experimental crystal sizes and allow for spatially disordered phenomena to occur. Here, we take a major step forward and enable simulations of metal-organic frameworks containing more than a million atoms. This is achieved by exploiting the massive parallelism of state-of-the-art GPUs using the OpenMM software package, for which we developed a new pressure control algorithm that allows for fully anisotropic unit cell fluctuations. As a proof of concept, we study the transition mechanism in MIL-53(Al) under various external pressures. In the lower pressure regime, a layer-by-layer mechanism is observed, while at higher pressures, the transition is initiated at discrete nucleation points and temporarily induces various domains in both the open and closed pore phases. The presented workflow opens the possibility to deduce transition mechanism diagrams for soft porous crystals in terms of the crystal size and the strength of the external stimulus.

Gold Open Access

Reductive imino-pinacol coupling reaction of halogenated aromatic imines and iminium ions catalyzed by precious metal catalysts using hydrogen

K.N.R. Dumoleijn, E. Van den Broeck, J. Stavinoha, V. Van Speybroeck, K. Moonen, C.V. Stevens
Journal of Catalysis
400, 103-113
2021
A1

Abstract 

The first heterogeneously catalyzed process for the reductive coupling of imines and iminium ions is reported using precious metal catalysts in combination with hydrogen gas as the terminal reductant. The optimized method in terms of catalyst composition and reaction conditions allowed to produce aromatic vicinal diamines without the use of stoichiometric amounts of zero or low valent metals, which is currently the preferred method. The most important mechanistic features of the reaction were unraveled by a combined experimental and computational approach. The developed methodology is very efficient for the coupling of aromatic iminium ions with yields up to 88 % while imines give only low to moderate yields.

Gold Open Access

Hydrogen Clathrates: Next Generation Hydrogen Storage Materials

A. Gupta, G.V. Baron, P. Perreault, S. Lenaerts, R.-G. Ciocarlan, P. Cool, P. M. Mileo, S.M.J. Rogge, V. Van Speybroeck, G. Watson, P. Van der Voort, M. Houlleberghs, E. Breynaert, J.A. Martens, J.F.M. Denayer
Energy Storage Materials
41, 69-107
2021
A1

Abstract 

Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.

Gold Open Access

Crystals springing into action: metal-organic framework CUK-1 as a pressure-driven molecular spring dagger

P. Iacomi, J.S. Lee, L. Vanduyfhuys, K. H. Cho, P. Fertey, J. Wieme, D. Granier, G. Maurin, V. Van Speybroeck, J.-S. Chang, P.G. Yot
Chemical Science
12, 5682-5687
2021
A1

Abstract 

Mercury porosimetry and in situ high pressure single crystal X-ray diffraction revealed the wine-rack CUK-1 MOF as a unique crystalline material capable of a fully reversible mechanical pressure-triggered structural contraction. The near-absence of hysteresis upon cycling exhibited by this robust MOF, akin to an ideal molecular spring, is associated with a constant work energy storage capacity of 40 J/gr. Molecular simulations were further deployed to uncover the free-energy landscape behind this unprecedented pressure-responsive phenomenon in the area of compliant hybrid porous materials. This discovery is of utmost importance from the perspective of instant energy storage and delivery.

Open Access version available at UGent repository
Green Open Access

Towards modeling spatiotemporal processes in metal–organic frameworks

V. Van Speybroeck, S. Vandenhaute, A.E.J. Hoffman, S.M.J. Rogge
Trends in Chemistry
3 (8): 605-619
2021
A1

Abstract 

Metal–organic frameworks (MOFs) are hybrid materials constructed from metal clusters linked by organic linkers, which can be engineered for target functional applications in, for example, catalysis, sensing, and storage. The dynamic response of MOFs on external stimuli can be tuned by spatial heterogeneities such as defects and crystal size as well as by operating conditions such as temperature, pressure, moisture, and external fields. Modeling the spatiotemporal evolution of MOFs under operating conditions and at length and time scales comparable with experimental observations is extremely challenging. Herein, we give a status on the modeling of spatiotemporal processes in MOFs under working conditions and reflect on how modeling can be reconciled with in situ spectroscopy measurements.

Gold Open Access

Overview of N-rich antennae investigated in lanthanide-based temperature sensing

F. Vanden Bussche, A.M. Kaczmarek, V. Van Speybroeck, P. Van der Voort, C.V. Stevens
Chemistry - A European Journal
27 (25), 7214-7230
2021
A1

Abstract 

The market share of noncontact temperature sensors is expending due to fast technological and medical evolutions. In the wide variety of noncontact sensors, lanthanide‐based temperature sensors stand out. They benefit from high photostability, relatively long decay times and high quantum yields. To circumvent their low molar light absorption, the incorporation of a light‐harvesting antenna is required. This Review provides an overview of the nitrogen‐rich antennae in lanthanide‐based temperature sensors, emitting in the visible light spectrum, and discusses their temperature sensor ability. The N‐rich ligands are incorporated in many different platforms. The investigation of different antennae is required to develop temperature sensors with diverse optical properties and to create a diverse offer for the multiple application fields. Molecular probes, consisting of small molecules, are first discussed. Furthermore, the thermometer properties of ratiometric temperature sensors, based on di‐ and polynuclear complexes, metal–organic frameworks, periodic mesoporous organosilicas and porous organic polymers, are summarized. The antenna mainly determines the application potential of the ratiometric thermometer. It can be observed that molecular probes are operational in the broad physiological range, metal–organic frameworks are generally very useful in the cryogenic region, periodic mesoporous organosilica show temperature dependency in the physiological range, and porous organic polymers are operative in the cryogenic‐to‐medium temperature range.

Open Access version available at UGent repository

DOI 

10.1002/chem.202100007

Coordination and activation of nitrous oxide by iron zeolites

M.L. Bols, B.E.R. Snyder, H.M. Rhoda, P. Cnudde, G. Fayad, R.A. Schoonheydt, V. Van Speybroeck, E.I. Solomon, B. F. Sels
Nature Catalysis
4, 332-340
2021
A1

Abstract 

Iron-containing zeolites are heterogeneous catalysts that exhibit remarkable activity in the selective oxidation of inert hydrocarbons and catalytic decomposition of nitrous oxide (N2O). The reduction of N2O is critical to both these functions, but experimental data tracking the iron active sites during N2O binding and activation are limited. Here, the N2O-ligated Fe(ii) active site in iron-exchanged zeolite beta is isolated and characterized by variable-temperature Mössbauer, diffuse reflectance UV-vis-NIR and Fourier transform infrared spectroscopy. N2O binds through the terminal nitrogen atom with substantial backbonding from the Fe(ii) centre at low temperature. At higher temperatures, the Fe–N2O interaction is weakened, facilitating isomerization to the O-bound form, which is competent in O-atom transfer. Density functional theory calculations show the geometric and electronic structure requirements for N2O binding and activation. A geometric distortion imposed by the zeolite lattice plays an important role in activating N2O. This highlights a mechanism for structural control over function in Fe-zeolite catalysts.

Pages

Subscribe to RSS - V. Van Speybroeck