J. Hofkens

Investigation of the Octahedral Network Structure in Formamidinium Lead Bromide Nanocrystals by Low-Dose Scanning Transmission Electron Microscopy

N. J. Schrenker, T. Braeckevelt, A. De Backer, N. Livakas, C.-P. Yu, T. Friedrich, M.B.J. Roeffaers, J. Hofkens, J. Verbeeck, L. Manna, V. Van Speybroeck, S. Van Aert, S. Bals
Nano Letters
2024
A1

Abstract 

Metal halide perovskites (MHP) are highly promising semiconductors. In this study, we focus on FAPbBr3 nanocrystals, which are of great interest for green light-emitting diodes. Structural parameters significantly impact the properties of MHPs and are linked to phase instability, which hampers long-term applications. Clearly, there is a need for local and precise characterization techniques at the atomic scale, such as transmission electron microscopy. Because of the high electron beam sensitivity of MHPs, these investigations are extremely challenging. Here, we applied a low-dose method based on four-dimensional scanning transmission electron microscopy. We quantified the observed elongation of the projections of the Br atomic columns, suggesting an alternation in the position of the Br atoms perpendicular to the Pb–Br–Pb bonds. Together with molecular dynamics simulations, these results remarkably reveal local distortions in an on-average cubic structure. Additionally, this study provides an approach to prospectively investigating the fundamental degradation mechanisms of MHPs.

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.

A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials

A.E.J. Hoffman, W. Temmerman, E. Campbell, A. A. Damin, I. Lezcano-Gonzalez, A.M. Beale, S. Bordiga, J. Hofkens, V. Van Speybroeck
Journal of Chemical Theory and Computation
Volume: 20, Issue: 2, Pages: 513-531
2023
A1

Abstract 

Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal–organic frameworks (MOFs), and metal–halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton’s equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal–halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.

Additivity of atomic strain fields as a tool to strain-engineering phase-stabilized CsPbI3 perovskites

J. Teunissen, T. Braeckevelt, I. Skvortsova, J. Guo, B. Pradhan, E. Debroye, M. Roeffaers, J. Hofkens, S. Van Aert, S. Bals, S.M.J. Rogge, V. Van Speybroeck
The Journal of Physical Chemistry C
127, 48, 23400-23411
2023
A1

Abstract 

CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.

Open Access version available at UGent repository
Gold Open Access

Understanding the phase transition mechanism in the lead halide perovskite CsPbBr₃ via theoretical and experimental GIWAXS and Raman spectroscopy

A.E.J. Hoffman, R.A. Saha, S. Borgmans, P. Puech, T. Braeckevelt, M.B.J. Roeffaers, J.A. Steele, J. Hofkens, V. Van Speybroeck
APL Materials
Volume 11, Issue 4, article number 041124
2023
A1

Abstract 

Metal-halide perovskites (MHPs) exhibit excellent properties for application in optoelectronic devices. The bottleneck for their incorporation is the lack of long-term stability such as degradation due to external conditions (heat, light, oxygen, moisture, and mechanical stress), but the occurrence of phase transitions also affects their performance. Structural phase transitions are often influenced by phonon modes. Hence, an insight into both the structure and lattice dynamics is vital to assess the potential of MHPs. In this study, GIWAXS and Raman spectroscopy are applied, supported by density functional theory calculations, to investigate the apparent manifestation of structural phase transitions in the MHP CsPbBr3. Macroscopically, CsPbBr3 undergoes phase transitions between a cubic (α), tetragonal (β), and orthorhombic (γ) phase with decreasing temperature. However, microscopically, it has been argued that only the γ phase exists, while the other phases exist as averages over length and time scales within distinct temperature ranges. Here, direct proof is provided for this conjecture by analyzing both theoretical diffraction patterns and the evolution of the tilting angle of the PbBr6 octahedra from molecular dynamics simulations. Moreover, sound agreement between experimental and theoretical Raman spectra allowed to identify the Raman active phonon modes and to investigate their frequency as a function of temperature. As such, this work increases the understanding of the structure and lattice dynamics of CsPbBr3 and similar MHPs.

Gold Open Access

An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin films

J.A. Steele, T. Braeckevelt, V. Prakasam, G. Degutis, H. Yuan, H. Jin, E. Solano, P. Puech, S. Basak, M.I. Pintor-Monroy, H. Van Gorp, G. Fleury, R.X. Yang, Z. Lin, H. Huang, E. Debroye, D. Chernyshov, B. Chen, M. Wei, Y. Hou, R. Gehlhaar, J. Genoe, S. De Feyter, S.M.J. Rogge, A. Walsh, E.H. Sargent, P. Yang, J. Hofkens, V. Van Speybroeck, M.B.J. Roeffaers
Nature Communications
13, 7513
2022
A1

Abstract 

The black perovskite phase of CsPbI3 is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI2-based interfacial microstructure into otherwise-unstable CsPbI3 perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI3 perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI3 perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches.

Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials

T. Braeckevelt, R. Goeminne, S. Vandenhaute, S. Borgmans, T. Verstraelen, J.A. Steele, M. Roeffaers, J. Hofkens, S.M.J. Rogge, V. Van Speybroeck
Chemistry of Materials
34, 19, 8561–8576
2022
A1

Abstract 

While metal halide perovskites (MHPs) have shown great potential for various optoelectronic applications, their widespread adoption in commercial photovoltaic cells or photosensors is currently restricted, given that MHPs such as CsPbI3 and FAPbI3 spontaneously transition to an optically inactive nonperovskite phase at ambient conditions. Herein, we put forward an accurate first-principles procedure to obtain fundamental insight into this phase stability conundrum. To this end, we computationally predict the Helmholtz free energy, composed of the electronic ground state energy and thermal corrections, as this is the fundamental quantity describing the phase stability in polymorphic materials. By adopting the random phase approximation method as a wave function-based method that intrinsically accounts for many-body electron correlation effects as a benchmark for the ground state energy, we validate the performance of different exchange-correlation functionals and dispersion methods. The thermal corrections, accessed through the vibrational density of states, are accessed through molecular dynamics simulations, using a phase-transferable machine learning potential to accurately account for the MHPs’ anharmonicity and mitigate size effects. The here proposed procedure is critically validated on CsPbI3, which is a challenging material as its phase stability changes slowly with varying temperature. We demonstrate that our procedure is essential to reproduce the experimental transition temperature, as choosing an inadequate functional can easily miss the transition temperature by more than 100 K. These results demonstrate that the here validated methodology is ideally suited to understand how factors such as strain engineering, surface functionalization, or compositional engineering could help to phase-stabilize MHPs for targeted applications.

Open Access version available at UGent repository
Gold Open Access

Texture Formation in Polycrystalline Thin Films of All-Inorganic Lead Halide Perovskite

J.A. Steele, E. Solano, H. Jin, V. Prakasam, T. Braeckevelt, H. Yuan, Z. Lin, R. de Kloe, Q. Wang, S.M.J. Rogge, V. Van Speybroeck, D. Chernyshov, J. Hofkens, M. Roeffaers
Advanced Materials
33 (13), 2007224
2021
A1

Abstract 

Controlling grain orientations within polycrystalline all-inorganic halide perovskite solar cells can help increase conversion efficiencies toward their thermodynamic limits, however the forces governing texture formation are ambiguous. Using synchrotron X-ray diffraction, we report meso-structure formation within polycrystalline CsPbI2.85Br0.15 powders as they cool from a high-temperature cubic perovskite (α-phase). Tetragonal distortions (β-phase) trigger preferential crystallographic alignment within polycrystalline ensembles, a feature we suggest is coordinated across multiple neighboring grains via interfacial forces that select for certain lattice distortions over others. External anisotropy is then imposed on polycrystalline thin films of orthorhombic (γ-phase) CsPbI3-xBrx perovskite via substrate clamping, revealing two fundamental uniaxial texture formations; (i) I-rich films possess orthorhombic-like texture (<100> out-of-plane; <010> and <001> in-plane), while (ii) Br-rich films form tetragonal-like texture (<110> out-of-plane; <1-10> and <001> in-plane). In contrast to relatively uninfluential factors like the choice of substrate, film thickness and annealing temperature, Br incorporation modifies the γ-CsPbI3-xBrx crystal structure by reducing the orthorhombic lattice distortion (making it more tetragonal-like) and governs the formation of the different, energetically favored textures within polycrystalline thin films.

Thermal unequilibrium of strained black CsPbI3 thin films

J.A. Steele, H. Jin, I. Dovgaliuk, R.F. Berger, T. Braeckevelt, H. Yuan, C. Martin, E. Solano, K. Lejaeghere, S.M.J. Rogge, C. Notebaert, W. Vandezande, K.P.F. Janssen, B. Goderis, E. Debroye, Y.-K. Wang, Y. Dong, D. Ma, M. Saidaminov, H. Tan, Z. Lu, V. Dyadkin, D. Chernyshov, V. Van Speybroeck, E.H. Sargent, J. Hofkens, M. Roeffaers
Science
365 (6454), 679-684
2019
A1

Abstract 

The high-temperature all-inorganic CsPbI3 perovskite black phase is metastable relative to its yellow non-perovskite phase, at room temperature. Since only the black phase is optically active, this represents an impediment for the use of CsPbI3 in optoelectronic devices. We report the use of substrate clamping and biaxial strain to render stable, at room temperature, black phase CsPbI3 thin films. We used synchrotron-based grazing incidence wide angle x-ray scattering to track the introduction of crystal distortions and strain-driven texture formation within black CsPbI3 thin films when they were cooled following annealing at 330°C. The thermal stability of black CsPbI3 thin films is vastly improved by the strained interface, a response verified by ab initio thermodynamic modelling.

Open Access version available at UGent repository
Gold Open Access

Accurately determining the transition temperature of metal halide perovskites via RPA calculations and phase-transferable machine learning potentials

ISBN/ISSN:
Talk

Conference / event / venue 

DFT2022
Brussels, Belgium
Monday, 29 August, 2022 to Friday, 2 September, 2022

Pages

Subscribe to RSS - J. Hofkens