Understanding the phase transition mechanism in the lead halide perovskite CsPbBr₃ via theoretical and experimental GIWAXS and Raman spectroscopy

A.E.J. Hoffman, R.A. Saha, S. Borgmans, P. Puech, T. Braeckevelt, M.B.J. Roeffaers, J.A. Steele, J. Hofkens, V. Van Speybroeck
APL Materials
Volume 11, Issue 4, article number 041124


Metal-halide perovskites (MHPs) exhibit excellent properties for application in optoelectronic devices. The bottleneck for their incorporation is the lack of long-term stability such as degradation due to external conditions (heat, light, oxygen, moisture, and mechanical stress), but the occurrence of phase transitions also affects their performance. Structural phase transitions are often influenced by phonon modes. Hence, an insight into both the structure and lattice dynamics is vital to assess the potential of MHPs. In this study, GIWAXS and Raman spectroscopy are applied, supported by density functional theory calculations, to investigate the apparent manifestation of structural phase transitions in the MHP CsPbBr3. Macroscopically, CsPbBr3 undergoes phase transitions between a cubic (α), tetragonal (β), and orthorhombic (γ) phase with decreasing temperature. However, microscopically, it has been argued that only the γ phase exists, while the other phases exist as averages over length and time scales within distinct temperature ranges. Here, direct proof is provided for this conjecture by analyzing both theoretical diffraction patterns and the evolution of the tilting angle of the PbBr6 octahedra from molecular dynamics simulations. Moreover, sound agreement between experimental and theoretical Raman spectra allowed to identify the Raman active phonon modes and to investigate their frequency as a function of temperature. As such, this work increases the understanding of the structure and lattice dynamics of CsPbBr3 and similar MHPs.

Gold Open Access