S. Borgmans

Computational Protocol for the Spectral Assignment of NMR Resonances in Covalent Organic Frameworks

S. Vanlommel, S. Borgmans, C. V. Chandran, S. Radhakrishnan, P. Van der Voort, E. Breynaert, V. Van Speybroeck
Journal of Chemical Theory and Computation (JCTC)
2024
A1

Abstract 

Solid-state nuclear magnetic resonance spectroscopy is routinely used in the field of covalent organic frameworks to elucidate or confirm the structure of the synthesized samples and to understand dynamic phenomena. Typically this involves the interpretation and simulation of the spectra through the assumption of symmetry elements of the building units, hinging on the correct assignment of each line shape. To avoid misinterpretation resulting from library-based assignment without a theoretical basis incorporating the impact of the framework, this work proposes a first-principles computational protocol for the assignment of experimental spectra, which exploits the symmetry of the underlying building blocks for computational feasibility. In this way, this protocol accommodates the validation of previous experimental assignments and can serve to complement new NMR measurements.

Engineering of Phenylpyridine- and Bipyridine-Based Covalent Organic Frameworks for Photocatalytic Tandem Aerobic Oxidation/Povarov Cyclization

M. Debruyne, S. Borgmans, S. Radhakrishnan, E. Breynaert, H. Vrielinck, K. Leus, A. Laemont, J. De Vos, K. S. Rawat, S. Vanlommel, H. Rijckaert, H. Salemi, J. Everaert, F. Vanden Bussche, D. Poelman, R. Morent, N. De Geyter, P. Van der Voort, V. Van Speybroeck, C.V. Stevens
ACS Applied Materials & Interfaces
15, 29, 35092–35106
2023
A1

Abstract 

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

Open Access version available at UGent repository

OGRe: Optimal grid refinement protocol for accurate free energy surfaces and its application to proton hopping in zeolites and 2D COF stacking

S. Borgmans, S.M.J. Rogge, L. Vanduyfhuys, V. Van Speybroeck
Journal of Chemical Theory and Computation
19, 24, 9032-9048
2023
A1

Abstract 

While free energy surfaces are the crux of our understanding in many chemical and biological processes, their accuracy is generally unknown. Moreover, many developments to improve their accuracy are often complicated, impeding their general use. Luckily, several tools and guidelines are already in place to identify these shortcomings, but they are typically lacking in flexibility or fail to systematically determine how to improve the accuracy of the free energy calculation. To overcome these limitations, this work introduces OGRe--a python package for optimal grid refinement in an arbitrary number of dimensions. OGRe is based on three metrics which gauge the confinement, consistency, and overlap of each simulation in a series of umbrella sampling (US) simulations, an enhanced sampling technique ubiquitously adopted to construct free energy surfaces for hindered processes. As these three metrics are fundamentally linked to the accuracy of the weighted histogram analysis method, adopted to generate free energy surfaces from US simulations, they facilitate a systematic construction of accurate free energy profiles, where each metric is driven by a specific umbrella parameter. This allows for the derivation of a consistent and optimal collection of umbrellas for each simulation, largely independent of the initial values, thereby dramatically increasing the ease-of-use towards accurate free energy surfaces. As such, OGRe is particularly suited to determined complex free energy surfaces, with large activation barriers and shallow minima, which underpin many physical and chemical transformations, and hence to further our fundamental understanding of these processes.

Gold Open Access

Understanding the phase transition mechanism in the lead halide perovskite CsPbBr₃ via theoretical and experimental GIWAXS and Raman spectroscopy

A.E.J. Hoffman, R.A. Saha, S. Borgmans, P. Puech, T. Braeckevelt, M.B.J. Roeffaers, J.A. Steele, J. Hofkens, V. Van Speybroeck
APL Materials
Volume 11, Issue 4, article number 041124
2023
A1

Abstract 

Metal-halide perovskites (MHPs) exhibit excellent properties for application in optoelectronic devices. The bottleneck for their incorporation is the lack of long-term stability such as degradation due to external conditions (heat, light, oxygen, moisture, and mechanical stress), but the occurrence of phase transitions also affects their performance. Structural phase transitions are often influenced by phonon modes. Hence, an insight into both the structure and lattice dynamics is vital to assess the potential of MHPs. In this study, GIWAXS and Raman spectroscopy are applied, supported by density functional theory calculations, to investigate the apparent manifestation of structural phase transitions in the MHP CsPbBr3. Macroscopically, CsPbBr3 undergoes phase transitions between a cubic (α), tetragonal (β), and orthorhombic (γ) phase with decreasing temperature. However, microscopically, it has been argued that only the γ phase exists, while the other phases exist as averages over length and time scales within distinct temperature ranges. Here, direct proof is provided for this conjecture by analyzing both theoretical diffraction patterns and the evolution of the tilting angle of the PbBr6 octahedra from molecular dynamics simulations. Moreover, sound agreement between experimental and theoretical Raman spectra allowed to identify the Raman active phonon modes and to investigate their frequency as a function of temperature. As such, this work increases the understanding of the structure and lattice dynamics of CsPbBr3 and similar MHPs.

Gold Open Access

ReDD-COFFEE: A ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings

J. De Vos, S. Borgmans, P. Van der Voort, S.M.J. Rogge, V. Van Speybroeck
J. Mater. Chem. A
11, 14, 7468-7487
2023
A1

Abstract 

Covalent organic frameworks (COFs) are a versatile class of building block materials with outstanding properties thanks to their strong covalent bonds and low density. Given the sheer number of hypothetical COFs envisioned via reticular synthesis, only a fraction of all COFs have been synthesized so far. Computational high-throughput screenings offer a valuable alternative to speed-up such materials discovery. Yet, such screenings vitally depend on the availability of diverse databases and accurate interatomic potentials to efficiently predict each hypothetical COF’s macroscopic behavior, which is currently lacking. Therefore, we herein present ReDD-COFFEE, the Ready-to-use and Diverse Database of Covalent Organic Frameworks with Force field based Energy Evaluation, containing 268 687 COFs and accompanying ab initio derived force fields that are shown to outperform generic ones. Our structure assembly approach results in a huge amount of computer-ready structures with a high diversity in terms of geometric properties, linker cores, and linkage types. Furthermore, the textural properties of the database are analyzed and the most promising COFs for vehicular methane storage are identified. By making the database freely accessible, we hope it may also inspire others to further explore the potential of these intriguing functional materials.

 

Gold Open Access

Absorbing stress via molecular crumple zones: Strain engineering flexibility into the rigid UiO-66 material

S.M.J. Rogge, S. Borgmans, V. Van Speybroeck
Matter
6, 5, 1435-1462
2023
A1

Abstract 

Nanostructured materials such as metal-organic frameworks and perovskites can be tuned toward applications ranging from sensors to photovoltaic devices. Such design requires causal relations between a material’s atomic structure and macroscopic function, which remain elusive. Therefore, we herein introduce strain engineering as a general approach to rationalizing and designing how atomic-level structural modifications induce dynamically interacting strain fields that dictate a material’s macroscopic mechanical behavior. We first demonstrate the potential of strain engineering by designing shear instabilities in UiO-66, leading to counterintuitive behavior. The strain-engineered structures exhibit time- and space-dependent crumple zones that instill flexibility in the rigid material and locally focus the strain, partially preserving the material’s porosity under compression. Secondly, our strain fields help explain stimulus-induced phase coexistence in the flexible CoBDP, DMOF-1(Zn), and MIL-53(Al)-F materials. These examples demonstrate how strain engineering can be adopted to design state-of-the-art materials for challenging applications from the atomic level onward.

 

Gold Open Access

Exploring the phase stability in interpenetrated diamondoid covalent organic frameworks

S. Borgmans, S.M.J. Rogge, J. De Vos, P. Van der Voort, V. Van Speybroeck
Communications Chemistry
6, 1, 5
2023
A1

Abstract 

Soft porous crystals, which are responsive to external stimuli such as temperature, pressure, or gas adsorption, are being extensively investigated for various technological applications. However, while substantial research has been devoted to stimuli-responsive metal-organic frameworks, structural flexibility in 3D covalent organic frameworks (COFs) remains ill-understood, and is almost exclusively found in COFs exhibiting the diamondoid (dia) topology. Herein, we systemically investigate how the structural decoration of these 3D dia COFs—their specific building blocks and degree of interpenetration—as well as external triggers such as temperature and guest adsorption may promote or suppress their phase transformations, as captured by a collection of 2D free energy landscapes. Together, these provide a comprehensive understanding of the necessary conditions to design flexible diamondoid COFs. This study reveals how their flexibility originates from the balance between steric hindrance and dispersive interactions of the structural decoration, thereby providing insight into how new flexible 3D COFs can be designed.

Open Access version available at UGent repository
Gold Open Access

How the Layer Alignment in Two-dimensional Nanoporous Covalent Organic Frameworks Impacts Its Electronic Properties

K. S. Rawat, S. Borgmans, T. Braeckevelt, C.V. Stevens, P. Van der Voort, V. Van Speybroeck
ACS Applied Nano Materials
5, 10, 14377-14387
2022
A1

Abstract 

Two-dimensional nanoporous covalent organic frame-works (2D COFs) have gathered significant interest due to their wide range of applications. Due to the lack of strong covalent interlayer interactions, their layers can be stacked in countless ways, each resulting in unique nanoscale characteristics impacting the structural, chemical, and electronic properties. To characterize and understand the layer stacking in 2D COFs and its effect on the structural and electronic properties, we carried out a detailed density functional theory investigation on four materials, CTF-1, COF-1, COF-5, and Pc-PBBA. This entailed an in-depth evaluation of the potential energy as a function of the interlayer distance and offset, the powder X-ray diffraction (PXRD) pattern, and the electronic properties. From the potential energy surfaces, the typical slipped AA-stacking configuration was confirmed as optimal for each of the 2D COFs, with a slight offset from a perfect alignment of the layers. The statically calculated PXRD patterns based on these optimized stacking configurations showed discrepancies when compared to experimental data. Instead, when properly accounting for dynamic fluctuations by calculating the average diffraction pattern over the course of a molecular dynamics simulation, a better agreement with the experiment is obtained. Different stacking configurations also profoundly affected the electronic band structure of COFs as the interlayer pi-pi interactions are significantly impacted by the layer offset. Evidently, with decreasing layer offsets, the pi-pi interactions increase due to the layer alignment, leading to a decrease in the band gap and an increase in interlayer charge mobility. Our study highlights the need for accurate modeling of the stacking configuration in 2D COFs as a small-scale deviation in the adjacent layer position can significantly affect the structural and electronic properties.

Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials

T. Braeckevelt, R. Goeminne, S. Vandenhaute, S. Borgmans, T. Verstraelen, J.A. Steele, M. Roeffaers, J. Hofkens, S.M.J. Rogge, V. Van Speybroeck
Chemistry of Materials
34, 19, 8561–8576
2022
A1

Abstract 

While metal halide perovskites (MHPs) have shown great potential for various optoelectronic applications, their widespread adoption in commercial photovoltaic cells or photosensors is currently restricted, given that MHPs such as CsPbI3 and FAPbI3 spontaneously transition to an optically inactive nonperovskite phase at ambient conditions. Herein, we put forward an accurate first-principles procedure to obtain fundamental insight into this phase stability conundrum. To this end, we computationally predict the Helmholtz free energy, composed of the electronic ground state energy and thermal corrections, as this is the fundamental quantity describing the phase stability in polymorphic materials. By adopting the random phase approximation method as a wave function-based method that intrinsically accounts for many-body electron correlation effects as a benchmark for the ground state energy, we validate the performance of different exchange-correlation functionals and dispersion methods. The thermal corrections, accessed through the vibrational density of states, are accessed through molecular dynamics simulations, using a phase-transferable machine learning potential to accurately account for the MHPs’ anharmonicity and mitigate size effects. The here proposed procedure is critically validated on CsPbI3, which is a challenging material as its phase stability changes slowly with varying temperature. We demonstrate that our procedure is essential to reproduce the experimental transition temperature, as choosing an inadequate functional can easily miss the transition temperature by more than 100 K. These results demonstrate that the here validated methodology is ideally suited to understand how factors such as strain engineering, surface functionalization, or compositional engineering could help to phase-stabilize MHPs for targeted applications.

Open Access version available at UGent repository
Gold Open Access

Stable Amorphous Solid Dispersion of Flubendazole with High Drug Loading via Solvent Electrospinning

J. Becelaere, E. Van den Broeck, E. Schoolaert, V. Vanhoorne, J. F.R. Van Guyse, M. Vergaelen, S. Borgmans, K. Creemers, V. Van Speybroeck, C. Vervaet, R. Hoogenboom, K. De Clerck
Journal of controlled release
351, November 2022, Pages 123-126
2022
A1

Abstract 

In this work, an important step is taken towards the bioavailability improvement of poorly water-soluble drugs, such as flubendazole (Flu), posing a challenge in the current development of many novel oral-administrable therapeutics. Solvent electrospinning of a solution of the drug and poly(2-ethyl-2-oxazoline) is demonstrated to be a viable strategy to produce stable nanofibrous amorphous solid dispersions (ASDs) with ultrahigh drug-loadings (up to 55 wt% Flu) and long-term stability (at least one year). Importantly, at such high drug loadings, the concentration of the polymer in the electrospinning solution has to be lowered below the concentration where it can be spun in absence of the drug as the interactions between the polymer and the drug result in increased solution viscosity. A combination of experimental analysis and molecular dynamics simulations revealed that this formulation strategy provides strong, dominant and highly stable hydrogen bonds between the polymer and the drug, which is crucial to obtain the high drug-loadings and to preserve the long-term amorphous character of the ASDs upon storage. In vitro drug release studies confirm the remarkable potential of this electrospinning formulation strategy by significantly increased drug solubility values and dissolution rates (respectively tripled and quadrupled compared to the crystalline drug), even after storing the formulation for one year.

Pages

Subscribe to RSS - S. Borgmans