J. Wieme

Mechanical properties of a gallium fumarate metal-organic framework: a joint experimental-modelling exploration

P. Ramaswamy, J. Wieme, E. Alvarez, L. Vanduyfhuys, J.-P. Itié, P. Fabry, V. Van Speybroeck, C. Serre, P.G. Yot, G. Maurin
Journal of Materials Chemistry A
5 (22), 11047-11054
2017
A1

Abstract 

A gallium analogue of the commercially available Al-fumarate MOF A520 - recently identified as isotypic to MIL-53(Al)-BDC - has been synthesized and further characterized in its hydrated and dehydrated forms. The structural response under applied mechanical pressure of this MIL-53(Ga)-FA solid was investigated using advanced experimental techniques coupled with computational tools. Hg porosimetry and high-pressure X-Ray Powder Diffraction (XRPD) experiments evidenced that the pristine dehydrated large pore form undergoes an irreversible structure contraction upon an applied pressure of 85 MPa with an associated volume change of ca. 14% which makes this material promising for mechanical energy storage applications, in particular as a shock absorber. The breathing behavior was further rationalized performing a series of periodic Density Functional Theory (DFT) calculations with the construction of an energy profile as a function of volume for both MIL-53(Ga)-FA and its Aluminum analogue. As such we could fully unravel the microscopic origin of the difference in pressure-induced behavior for the aluminum and gallium fumarate based materials.

Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion

S.M.J. Rogge, J. Wieme, L. Vanduyfhuys, S. Vandenbrande, G. Maurin, T. Verstraelen, M. Waroquier, V. Van Speybroeck
Chemistry of Materials
28 (16), 5721-5732
2016
A1

Abstract 

In this Article, we present a molecular-level understanding of the experimentally observed loss of crystallinity in UiO-66-type metal–organic frameworks, including the pristine UiO-66 to -68 as well as defect-containing UiO-66 materials, under the influence of external pressure. This goal is achieved by constructing pressure-versus-volume profiles at finite temperatures using a thermodynamic approach relying on ab initio derived force fields. On the atomic level, the phenomenon is reflected in a sudden drop in the number of symmetry operators for the crystallographic unit cell because of the disordered displacement of the organic linkers with respect to the inorganic bricks. For the defect-containing samples, a reduced mechanical stability is observed, however, critically depending on the distribution of these defects throughout the material, hence demonstrating the importance of judiciously characterizing defects in these materials.

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.6b01956

Open Access version available at UGent repository
Gold Open Access

Exploring the flexibility of MIL-47(V)-type materials using force field molecular dynamics simulations

J. Wieme, L. Vanduyfhuys, S.M.J. Rogge, M. Waroquier, V. Van Speybroeck
Journal of Physical Chemistry C
120 (27), 14934-14947
2016
A1

Abstract 

The flexibility of three MIL-47(V)-type materials (MIL-47, COMOC-2 and COMOC-3) has been explored by constructing the pressure-versus-volume and free energy-versus-volume curves at various temperatures ranging from 100 K to 400 K. This is done with first-principles based force fields using the recently proposed QuickFF parameterization protocol. Specific terms were added for the materials at hand to describe the asymmetry of the one-dimensional vanadium-oxide chain and to account for the flexibility of the organic linkers. The force fields are used in a series of molecular dynamics simulations at fixed volumes, but varying unit cell shapes. The three materials show a distinct pressure-versus-volume behavior, which underlines the ability to tune the mechanical properties by varying the linkers towards different applications such as nanosprings, dampers and shock absorbers.

Open Access version available at UGent repository

A breathing zirconium metal-organic framework with reversible loss of crystallinity by correlated nanodomain formation

B. Bueken, F. Vermoortele, M.J. Cliffe, M.T. Wharmby, D. Foucher, J. Wieme, L. Vanduyfhuys, C. Martineau, N. Stock, F. Taulelle, V. Van Speybroeck, A.L. Goodwin, D. De Vos
Chemistry - A European Journal
2016, 22, 1-5
2016
A1

Abstract 

The isoreticular analogue of the metal–organic framework UiO-66(Zr), synthesized with the flexible trans-1,4-cyclohexanedicarboxylic acid as linker, shows a peculiar breathing behavior by reversibly losing long-range crystalline order upon evacuation. The underlying flexibility is attributed to a concerted conformational contraction of up to two thirds of the linkers, which breaks the local lattice symmetry. X-ray scattering data are described well by a nanodomain model in which differently oriented tetragonal-type distortions propagate over about 7–10 unit cells.

Fine-tuning the theoretically predicted structure of MIL-47(V) with the aid of powder X-ray diffraction

T. Bogaerts, L. Vanduyfhuys, D.E.P. Vanpoucke, J. Wieme, M. Waroquier, P. Van der Voort, V. Van Speybroeck
CrystEngComm
17, 8612–8622
2015
A1

Abstract 

The structural characterization of complex crystalline materials such as metal organic frameworks can prove a very difficult challenge both for experimentalists as for theoreticians. From theory, the flat potential energy surface of these highly flexible structures often leads to different geometries that are energetically very close to each other. In this work a distinction between various computationally determined structures is made by comparing experimental and theoretically derived X-ray diffractograms which are produced from the materials geometry. The presented approach allows to choose the most appropriate geometry of a MIL-47(V) MOF and even distinguish between different electronic configurations that induce small structural changes. Moreover the techniques presented here are used to verify the applicability of a newly developed force field for this material. The discussed methodology is of significant importance for modelling studies where accurate geometries are crucial, such as mechanical properties and adsorption of guest molecules.

Pages

Subscribe to RSS - J. Wieme