J. De Vos

Exploring the phase stability in interpenetrated diamondoid covalent organic frameworks

S. Borgmans, S.M.J. Rogge, J. De Vos, P. Van der Voort, V. Van Speybroeck
Communications Chemistry
6, 5
2023
A1

Abstract 

Soft porous crystals, which are responsive to external stimuli such as temperature, pressure, or gas adsorption, are being extensively investigated for various technological applications. However, while substantial research has been devoted to stimuli-responsive metal-organic frameworks, structural flexibility in 3D covalent organic frameworks (COFs) remains ill-understood, and is almost exclusively found in COFs exhibiting the diamondoid (dia) topology. Herein, we systemically investigate how the structural decoration of these 3D dia COFs—their specific building blocks and degree of interpenetration—as well as external triggers such as temperature and guest adsorption may promote or suppress their phase transformations, as captured by a collection of 2D free energy landscapes. Together, these provide a comprehensive understanding of the necessary conditions to design flexible diamondoid COFs. This study reveals how their flexibility originates from the balance between steric hindrance and dispersive interactions of the structural decoration, thereby providing insight into how new flexible 3D COFs can be designed.

Gold Open Access

Quantifying the likelihood of structural models through a dynamically enhanced powder X‐ray diffraction protocol

S. Borgmans, S.M.J. Rogge, J. De Vos, C.V. Stevens, P. Van der Voort, V. Van Speybroeck
Angewandte Chemie int. Ed.
60 (16), 8913-8922
2021
A1

Abstract 

Structurally characterizing new materials is tremendously challenging, especially when single crystal structures are hardly available which is often the case for covalent organic frameworks. Yet, knowledge of the atomic structure is key to establish structure‐function relations and enable functional material design. Herein a new protocol is proposed to unambiguously predict the structure of poorly crystalline materials through a likelihood ordering based on the X‐ray diffraction (XRD) pattern. Key of the procedure is the broad set of structures generated from a limited number of building blocks and topologies, which is submitted to operando structural characterization. The dynamic averaging in the latter accounts for the operando conditions and inherent temporal character of experimental measurements, yielding unparalleled agreement with experimental powder XRD patterns. The proposed concept can hence unquestionably identify the structure of experimentally synthesized materials, a crucial step to design next generation functional materials.

Gold Open Access

Pages

Subscribe to RSS - J. De Vos