I. Lezcano-Gonzalez

Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts

I. Lezcano-Gonzalez, E. Campbell, A.E.J. Hoffman, M. Bocus, I.V. Sazanovich, M. Towrie, M. Agote-Aran, E.K. Gibson, A. Greenaway, K. De Wispelaere, V. Van Speybroeck, A.M. Beale
Nature Materials
19, 1081–1087
2020
A1

Abstract 

The methanol-to-hydrocarbons reaction refers collectively to a series of important industrial catalytic processes to produce either olefins or gasoline. Mechanistically, methanol conversion proceeds through a ‘pool’ of hydrocarbon species. For the methanol-to-olefins process, these species can be delineated broadly into ‘desired’ lighter olefins and ‘undesired’ heavier fractions that cause deactivation in a matter of hours. The crux in further catalyst optimization is the ability to follow the formation of carbonaceous species during operation. Here, we report the combined results of an operando Kerr-gated Raman spectroscopic study with state-of-the-art operando molecular simulations, which allowed us to follow the formation of hydrocarbon species at various stages of methanol conversion. Polyenes are identified as crucial intermediates towards formation of polycyclic aromatic hydrocarbons, with their fate determined largely by the zeolite topology. Notably, we provide the missing link between active and deactivating species, which allows us to propose potential design rules for future-generation catalysts.

Determination of the Nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13

I. Lezcano-Gonzalez, D. Wragg, W. A. Slawinski, K. Hemelsoet, A. Van Yperen-De Deyne, M. Waroquier, V. Van Speybroeck, A. Beale
Journal of Physical Chemistry C
119 (43), 24393-24403
2015
A1

Abstract 

Ammonia-selective catalytic reduction (NH3-SCR) using Cu zeolites is a well-established strategy for the abatement of NOx gases. Recent studies have demonstrated that Cu is particularly active when exchanged into the SSZ-13 zeolite, and its location in either the 6r or 8r renders it an excellent model system for fundamental studies. In this work, we examine the interaction of NH3-SCR relevant gases (NO and NH3) with the Cu2+ centers within the SSZ-13 structure, coupling powder diffraction (PD), X-ray absorption spectroscopy (XAFS), and density functional theory (DFT). This combined approach revealed that, upon calcination, cooling and gas exposure Cu ions tend to locate in the 8r window. After NO introduction, Cu ions are seen to coordinate to two framework oxygens and one NO molecule, resulting in a bent Cu–nitrosyl complex with a Cu–N–O bond angle of ∼150°. Whilst Cu seems to be partially reduced/changed in coordination state, NO is partially oxidized. On exposure to NH3 while the PD data suggest the Cu2+ ion occupies a similar position, simulation and XAFS pointed toward the formation of a Jahn–Teller distorted hexaamine complex [Cu(NH3)6]2+ in the center of the cha cage. These results have important implications in terms of uptake and storage of these reactive gases and potentially for the mechanisms involved in the NH3-SCR process.

Determining the Storage, Availability and Reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction Systems

I. Lezcano-Gonzalez, U. Deka, A. Van Yperen-De Deyne, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, B.M. Weckhuysen, A.M. Beale
Physical Chemistry Chemical Physics (PCCP)
16, 1639-1650
2014
A1

Abstract 

Three different types of NH3 species can be simultaneously present on Cu2+-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4+), formed on the Bronsted acid sites, [Cu(NH3)(4)](2+) complexes, resulting from NH3 coordination with the Cu2+ Lewis sites, and NH3 adsorbed on extra-framework Al ( EFAl) species, in contrast to the only two reacting NH3 species recently reported on Cu-SSZ-13 zeolite. The NH4+ ions react very slowly in comparison to NH3 coordinated to Cu2+ ions and are likely to contribute little to the standard NH3-SCR process, with the Bronsted groups acting primarily as NH3 storage sites. The availability/ reactivity of NH4+ ions can be however, notably improved by submitting the zeolite to repeated exchanges with Cu2+, accompanied by a remarkable enhancement in the low temperature activity. Moreover, the presence of EFAl species could also have a positive influence on the reaction rate of the available NH4+ ions. These results have important implications for NH3 storage and availability in Cu-Chabazite-based NH3-SCR systems.

Mobility of the active centre in Cu-SSZ-13 as catalyst material in the Selective Catalytic Reduction of NOx by ammonia

ISBN/ISSN:
Poster

Conference / event / venue 

Dutch Zeolite Association 2014, Ghent, Belgium
Ghent, Belgium
Tuesday, 7 October, 2014

Selective Catalytic Reduction of NOx by ammonia: Adsorption of NO on Cu-SSZ-13 using Ab initio simulations

ISBN/ISSN:
Poster

Conference / event / venue 

XVth Netherlands' Catalysis and Chemistry Conference (NCCC XV)
Noordwijkerhout, The Netherlands
Monday, 10 March, 2014 to Wednesday, 12 March, 2014
Subscribe to RSS - I. Lezcano-Gonzalez