M. Waroquier

Structures of cyclic dipeptides: an X-ray and computational study of cis- and trans-cyclo(Pip-Phe), cyclo(Pro-Phe) and their N-methyl derivatives

M. Budesinsky, I. Cisarova, J. Podlaha, F. Borremans, J.C. Martins, M. Waroquier, E. Pauwels
Acta Crystallographica Section B Structural Science
B66, 662-677
2010
A1

Abstract 

The crystal structures of eight cyclodipeptides are determined, incorporating pipecolic acid or proline and phenylalanine or N-methyl phenylalanine. This set of structures allows the evaluation of the effects on molecular conformation and crystal packing of imino acid ring-size, relative configuration of the two amino acids, and N-methylation. In the non-methylated compounds, hydrogen-bonding interactions form one-dimensional motifs that dominate the packing arrangement. Three compounds have more than one symmetry-independent molecule in the asymmetric unit (Z' > 1), indicative of a broad and shallow molecular energy minimum. Density functional theory calculations reveal the interplay between inter- and intramolecular factors in the crystals. Only for the N-methylated compounds do simulations of the molecules in the isolated state succeed to reproduce the observed crystallographic conformations. Puckering of the diketopiperazine ring and the deviation from planarity of the amide bonds are not reproduced in the remaining compounds. Cluster in vacuo calculations with a central cyclodipeptide molecule surrounded by hydrogen-bound molecules establish that hydrogen bonding is of major importance but that other intermolecular interactions must also contribute substantially to the crystal structure. More advanced periodic calculations, incorporating the crystallographic environment to the full extent, are necessary to correctly describe all the conformational features of these cyclodipeptide crystals.

Communication: Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

D. Vanfleteren, D. Van Neck, P. Bultinck, P.W. Ayers, M. Waroquier
Journal of Chemical Physics
133, 231103
2010
A1

Abstract 

A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.

Open Access version available at UGent repository

Electron Magnetic Resonance and Density Functional Theory Study of Room Temperature X-Irradiated β-d-Fructose Single Crystals

M.A. Tarpan, E. Pauwels, H. Vrielinck, M. Waroquier, F. Callens
Journal of Physical Chemistry A
114 (47), 12417–12426
2010
A1

Abstract 

Stable free radical formation in fructose single crystals X-irradiated at room temperature was investigated using Q-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three main crystallographic planes allowed an unambiguous determination of 12 proton HFC tensors. From the EIE studies, these hyperfine interactions were assigned to six different radical species, labeled F1−F6. Two of the radicals (F1 and F2) were studied previously by Vanhaelewyn et al. [Vanhaelewyn, G. C. A. M.; Pauwels, E.; Callens, F. J.; Waroquier, M.; Sagstuen, E.; Matthys, P. J. Phys. Chem. A 2006, 110, 2147.] and Tarpan et al. [Tarpan, M. A.; Vrielinck, H.; De Cooman, H.; Callens, F. J. J. Phys. Chem. A 2009, 113, 7994.]. The other four radicals are reported here for the first time and periodic density functional theory (DFT) calculations were used to aid their structural identification. For the radical F3 a C3 carbon centered radical with a carbonyl group at the C4 position is proposed. The close similarity in HFC tensors suggests that F4 and F5 originate from the same type of radical stabilized in two slightly different conformations. For these radicals a C2 carbon centered radical model with a carbonyl group situated at the C3 position is proposed. A rather exotic C2 centered radical model is proposed for F6.

Influence of Protein Environment on the Electron Paramagnetic Resonance Properties of Flavoprotein Radicals: A QM/MM Study

E. Pauwels, R. Declerck, T. Verstraelen, B. De Sterck, C.W.M. Kay, V. Van Speybroeck, M. Waroquier
Journal of Physical Chemistry B
114 (49), 16655–16665
2010
A1

Abstract 

The neutral and anionic semiquinone radicals of the flavin adenine dinucleotide (FAD) cofactor noncovalently bound in glucose oxidase from A. niger are examined with the aid of QM/MM molecular modeling methods, enabling complete inclusion of the protein environment. Recently, the electron paramagnetic resonance (EPR) characteristics, the anisotropic g tensor and all the significant hyperfine couplings, of these flavoprotein radicals were determined at high resolution (J. Phys. Chem. B 2008, 112, 3568). A striking difference between the neutral and anionic radical forms was found to be a shift in the gy principal value. Within the QM/MM framework, geometry optimization and molecular dynamics simulations are combined with EPR property calculations, employing a recent implementation by some of the authors in the CP2K software package. In this way, spectroscopic characteristics are computed on the fly during the MD simulations of the solvated protein structure, mimicking as best as possible the experimental conditions. The general agreement between calculated and experimental EPR properties is satisfactory and on par with those calculated with other codes (Gaussian 03, ORCA). The protonation state of two histidines (His559 and His516) at the catalytic site of this flavoprotein is found to have a remarkable influence on the isotropic hyperfine coupling of one of the methyl groups on the neutral FAD radical, which is consistent with experimental findings in other flavoproteins (J. Biol. Chem. 2007, 282, 4738). Furthermore, the shift in the gy principal values between the neutral and anionic radicals is well reproduced by QM/MM simulations. Incorporation of at least the nearest protein environment of the cofactor radicals proves to be vital for a correct reproduction, indicating that this shift is a global feature of the protein rather than a local one. In addition, QM/MM techniques are used to make a prediction of relative angles between important spectroscopic principal directions, which are not readily determined by conventional EPR experiments. Significantly, the directions of the gx and the gy components of the g-tensor that lie in the plane of the isoalloxazine moiety are rotated by approximately 59° between the neutral and the anionic radicals.

A Complete Catalytic Cycle for Supramolecular Methanol-to-Olefins Conversion by Linking Theory with Experiment

D.M. McCann, D. Lesthaeghe, P.W. Kletnieks, D.R. Guenther, M.J. Hayman, V. Van Speybroeck, M. Waroquier, J.F. Haw
Angewandte Chemie int. Ed.
47 (28), 5179-5182
2008
A1

Abstract 

Le Tour de MTO: A complete working catalytic cycle for the conversion of methanol to olefins in HZSM-5 is reported in full consistency with both experimental and theoretical observations. This particular route includes carbon-atom scrambling into a methylbenzene ring, NMR-observed cationic intermediates, and the production of isobutene.

Insight into the solvation and isomerization of 3-halo-1-azaallylic anions from ab initio metadynamics calculations and NMR experiments

R. Declerck, B. De Sterck, T. Verstraelen, G. Verniest, S. Mangelinckx, J. Jacobs, N. De Kimpe, M. Waroquier, V. Van Speybroeck
Chemistry - A European Journal
15 (3), 580 - 584
2009
A1

Abstract 

Long live theZisomer! The solvation and isomerization properties of lithiated 3-chloro-1-azaallylic anions in tetrahydrofuran are revealed. Extensive and convincing evidence is obtained from state-of-the-art first-principle molecular dynamics and metadynamics simulations in an explicit periodic solvent model, together with detailed NMR experiments.

Theoretical simulations elucidate the role of naphthalenic species during methanol conversion within H-SAPO-34

K. Hemelsoet, A. Nollet, V. Van Speybroeck, M. Waroquier
Chemistry - A European Journal
17(3) 9083–9093
2011
A1

Abstract 

The role of naphthalenic species during the methanol-to-olefins (MTO) process in a silicoaluminophosphate zeolitic material exhibiting the chabazite topology (H-SAPO-34) has been studied from first principles. These species could either act as active olefin-eliminating compounds or as precursors for deactivating species. Results incorporating van der Waals contributions for finite large clusters point out that successive methylation steps of naphthalenic compounds are feasible. The calculated intrinsic activation barrier is relatively independent of the number of methyl groups already attached on the aromatic compound and is approximately 140 kJ mol(-1) . The influence of the composition of the catalyst and hence the acidic strength on the intrinsic chemical kinetics was investigated in detail through comparison with the isostructural high-silicon material. Apparent chemical kinetics, starting from adsorbed methanol on the acid site, were also computed. The initiation steps of the side-chain route starting from a trimethylated naphthalenium ion were also examined. The actual side-chain methylation exhibits a high barrier and hence this mechanism involving methylated naphthalenes is not expected to be an active ethene-eliminating route in H-SAPO-34.

Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

The remarkable catalytic activity of the saturated metal organic framework V-MIL-47 in the cyclohexeneoxidation

K. Leus, I. Muylaert, M. Vandichel, G.B. Marin, M. Waroquier, V. Van Speybroeck, P. Van der Voort
Chemical Communications
46, 5085-5087
2010
A1

Abstract 

The remarkable catalytic activity of the saturated metal organic framework MIL-47 in the epoxidation of cyclohexene is elucidated by means of both experimental results and theoretical calculations.

Open Access version available at UGent repository

TAMkin: A Versatile Package for Vibrational Analysis and Chemical Kinetics

A. Ghysels, T. Verstraelen, K. Hemelsoet, M. Waroquier, V. Van Speybroeck
Journal of Chemical Information and Modeling (JCIM)
50 (9), 1736–1750
2010
A1

Abstract 

TAMkin is a program for the calculation and analysis of normal modes, thermochemical properties and chemical reaction rates. At present, the output from the frequently applied software programs ADF, CHARMM, CPMD, CP2K, Gaussian, Q-Chem, and VASP can be analyzed. The normal-mode analysis can be performed using a broad variety of advanced models, including the standard full Hessian, the Mobile Block Hessian, the Partial Hessian Vibrational approach, the Vibrational Subsystem Analysis with or without mass matrix correction, the Elastic Network Model, and other combinations. TAMkin is readily extensible because of its modular structure. Chemical kinetics of unimolecular and bimolecular reactions can be analyzed in a straightforward way using conventional transition state theory, including tunneling corrections and internal rotor refinements. A sensitivity analysis can also be performed, providing important insight into the theoretical error margins on the kinetic parameters. Two extensive examples demonstrate the capabilities of TAMkin: the conformational change of the biological system adenylate kinase is studied, as well as the reaction kinetics of the addition of ethene to the ethyl radical. The important feature of batch processing large amounts of data is highlighted by performing an extended level of theory study, which TAMkin can automate significantly.

Full Theoretical Cycle for both Ethene and Propene Formation during Methanol-to-Olefin Conversion in H-ZSM-5

D. Lesthaeghe, J. Van der Mynsbrugge, M. Vandichel, M. Waroquier, V. Van Speybroeck
ChemCatChem
3 (1), 208-212
2011
A1

Abstract 

The methanol-to-olefin (MTO) process, catalyzed by acidic zeolites such as H-ZSM-5, provides an increasingly important alternative to the production of light olefins from crude oil. However, the various mechanistic proposals for methanol-to-olefin conversion have been strongly disputed for the past several decades. This work provides theoretical evidence that the experimentally suggested ‘alkene cycle’, part of a co-catalytic hydrocarbon pool, offers a viable path to the production of both propene and ethene, in stark contrast to the often- proposed direct mechanisms. This specific proposal hinges on repeated methylation reactions of alkenes, starting from propene, which occur easily within the zeolite environment. Subsequent cracking steps regenerate the original propene molecule, while also forming new propene and ethene molecules as primary products. Because the host framework stabilizes intermediate carbenium ions, isomerization and deprotonation reactions are extremely fast. Combined with earlier joint experimental and theoretical work on polymethylbenzenes as active hydrocarbon pool species, it is clear that, in zeolite H-ZSM-5, multiple parallel and interlinked routes operate on a competitive basis.

Pages

Subscribe to RSS - M. Waroquier