M. Waroquier

Catalytic and molecular separation properties of Zeogrids and Zeotiles

J.A. Martens, J.W. Thybaut, J.F.M. Denayer, S. Pulinthanathu Sree, A. Aerts, M-F. Reyniers, V. Van Speybroeck, M. Waroquier, A. Buekenhoudt, I. Vankelecom, W. Buijs, J. Persoons, G.V. Baron, S. Bals, G. Van Tendeloo, G.B. Marin, P.A. Jacobs, C. Kirschhock
Catalysis Today
168, 17-27
2011
A1

Abstract 

Zeogrids and Zeotiles are hierarchical materials built from assembled MFI zeolite precursor units. Permanent secondary porosity in these materials is obtained through self assembly of nanoparticles encountered in MFI zeolite synthesis in the presence of supramolecular templates. Hereon, the aggregated species are termed nanoslabs. Zeogrids are layered materials with lateral spacings between nanoslabs creating galleries qualifying as supermicropores. Zeotiles present a diversity of tridimensional nanoslab assemblies with mesopores. Zeotile-1, -4 and -6 are hexagonal mesostructures. Zeotile-1 has triangular and hexagonal channels; Zeotile-4 has hexagonal channels interconnected via slits. Zeotile-2 has a cubic structure with gyroid type mesoporosity. The behavior of Zeogrids and Zeotiles in adsorption, membrane and chromatographic separation and catalysis has been characterized and compared with zeolites and mesoporous materials derived from unstructured silica sources. Shape selectivity was detected via adsorption of n- and iso-alkanes. The mesoporosity of Zeotiles can be exploited in chromatographic separation of biomolecules. Zeotiles present attractive separation properties relevant to CO2 sequestration. Because of its facile synthesis procedure without hydrothermal steps Zeogrid is convenient for membrane synthesis. The performance of Zeogrid membrane in gas separation, nanofiltration and pervaporation is reported. In the Beckmann rearrangement of cyclohexanone oxime Zeogrids and Zeotiles display a catalytic activity characteristic of silicalite-1 zeolites. Introduction of acidity and redox catalytic activity can be achieved via incorporation of Al and Ti atoms in the nanoslabs during synthesis. Zeogrids are active in hydrocracking, catalytic cracking, alkylation and epoxidation reactions. Zeogrids and Zeotiles often behave differently from ordered mesoporous materials as well as from zeolites and present a valuable extension of the family of hierarchical silicate based materials.

Assessment of a low-cost protocol for an ab initio based prediction of the mixing enthalpy at elevated temperatures: The Fe-Mo system

K. Lejaeghere, S. Cottenier, S. Claessens, M. Waroquier, V. Van Speybroeck
Physical Review B
83, 184201
2011
A1

Abstract 

We demonstrate how a limited number of ab initio calculations in combination with a simple Debye model can predict a concentration- and temperature-dependent mixing enthalpy for a binary system. Fe-Mo is taken as a test case, and our predictions are compared with phase diagram information and a recently measured heat of solution for Mo in Fe. Crystallographic and magnetic information is calculated for the λ and μ intermetallic phases in the Fe-Mo phase diagram as well. The present methodology can be useful for making a quick survey of mixing enthalpies in a large set of binary systems, in particular in the dilute concentration ranges where tabulated data are often lacking and where calphad-style modeling is less reliable.

Open Access version available at UGent repository

Regioselectivity in the ring opening of non-activated aziridines

S. Stankovic, M. D'Hooghe, S. Catak, M. Waroquier, V. Van Speybroeck, N. De Kimpe, H-J. Ha
Chemical Society Reviews
41, 643-665
2012
A1

Abstract 

In this critical review, the ring opening of non-activated 2-substituted aziridines via intermediate aziridinium salts will be dealt with. Emphasis will be put on the relationship between the observed regioselectivity and inherent structural features such as the nature of the C2 aziridine substituent and the nature of the electrophile and the nucleophile. This overview should allow chemists to gain insight into the factors governing the regioselectivity in aziridinium ring openings (81 references).

UV-Raman and 29Si NMR Spectroscopy Investigation of the Nature of Silicate Oligomers Formed by Acid Catalyzed Hydrolysis and Polycondensation of Tetramethylorthosilicate

A. Depla, E. Verheyen, A. Verfeyken, M. Van Houteghem, K. Houthoofd, V. Van Speybroeck, M. Waroquier, C. Kirschhock, J.A. Martens
Journal of Physical Chemistry C
115(22), 11077-11088
2011
A1

Abstract 

Tetramethylorthosilicate (TMOS) was hydrolyzed and polymerized under strongly acidic conditions in the presence of substoichiometric quantities of water. The polymerization reaction was monitored during 64 h using 29Si NMR and UV-Raman spectroscopy. The nature of the oligomers and the condensation reaction pathways were unraveled using this combination of experimental techniques together with molecular modeling. 29Si NMR and UV-Raman signals which previously were not documented in literature could be assigned. TMOS rapidly was converted into short straight methoxylated silicate chains. Subsequently the growth of oligomers proceeded by condensations between a hydrolyzed middle group of a chain with an end-group of another chain. Larger oligomers were attached to each other via condensations between middle groups generating multiply branched structures. Rings were formed late in the reaction scheme through internal condensations of sizable silicate molecules. Oligomers that were characteristic of the different stages of the polymerization process were proposed. Oligomerization pathways starting from tetramethylorthosilicate and tetraethylorthosilicate (TEOS) are significantly different. While with TMOS rings are formed only late in the oligomerization scheme, with TEOS rings are formed at early stages through cyclo-dimerization. This insight into the different nature of the oligomers obtained from TMOS and TEOS will assist the design of new silica sol–gel materials.

The significance of parameters in charge equilibration models

T. Verstraelen, P. Bultinck, V. Van Speybroeck, P.W. Ayers, D. Van Neck, M. Waroquier
Journal of Chemical Theory and Computation (JCTC)
7 (6), 1750-1764
2011
A1

Abstract 

Charge equilibration models such as the electronegativity equalization method (EEM) and the split charge equilibration (SQE) are extensively used in the literature for the efficient computation of accurate atomic charges in molecules. However, there is no consensus on a generic set of optimal parameters, even when one only considers parameters calibrated against atomic charges in organic molecules. In this work, the origin of the disagreement in the parameters is investigated by comparing and analyzing six sets of parameters based on two sets of molecules and three calibration procedures. The resulting statistical analysis clearly indicates that the conventional least-squares cost function based solely on atomic charges is in general ill-conditioned and not capable of fixing all parameters in a charge-equilibration model. Methodological guidelines are formulated to improve the stability of the parameters. Although in this case a simple interpretation of individual parameters is not possible, charge equilibration models remain of great practical use for the computation of atomic charges.

Assessment of atomic charge models for gas-phase computations on polypeptides

T. Verstraelen, E. Pauwels, F. De Proft, V. Van Speybroeck, P. Geerlings, M. Waroquier
Journal of Chemical Theory and Computation (JCTC)
8 (2), 661-676
2012
A1

Abstract 

The concept of the atomic charge is extensively used to model the electrostatic properties of proteins. Atomic charges are not only the basis for the electrostatic energy term in biomolecular force fields but are also derived from quantum mechanical computations on protein fragments to get more insight into their electronic structure. Unfortunately there are many atomic charge schemes which lead to significantly different results, and it is not trivial to determine which scheme is most suitable for biomolecular studies. Therefore, we present an extensive methodological benchmark using a selection of atomic charge schemes [Mulliken, natural, restrained electrostatic potential, Hirshfeld-I, electronegativity equalization method (EEM), and split-charge equilibration (SQE)] applied to two sets of penta-alanine conformers. Our analysis clearly shows that Hirshfeld-I charges offer the best compromise between transferability (robustness with respect to conformational changes) and the ability to reproduce electrostatic properties of the penta-alanine. The benchmark also considers two charge equilibration models (EEM and SQE), which both clearly fail to describe the locally charged moieties in the zwitterionic form of penta-alanine. This issue is analyzed in detail because charge equilibration models are computationally much more attractive than the Hirshfeld-I scheme. Based on the latter analysis, a straightforward extension of the SQE model is proposed, SQE+Q0, that is suitable to describe biological systems bearing many locally charged functional groups.

Open Access version available at UGent repository

Controlling the Tacticity in the Polymerization of N-Isopropylacrylamide: a computational study

T. Furuncuoğlu, I. Değirmenci, V. Aviyente, C. Atilgan, B. De Sterck, V. Van Speybroeck, M. Waroquier
Polymer
52 (24), 5503 - 5512
2011
A1

Abstract 

In this study, the effect of alcohols as solvents on the kinetics and the tacticity of poly(N-Isopropylacrylamide) (PNIPAM) is investigated with a combined static and molecular dynamics set of computational tools. Classical molecular dynamics calculations have been carried out to determine the location of the solvent molecules in the proximity of the monomer and the dimer. A combined implicit/explicit solvent model was used for the evaluation of the kinetics of the dimeric polymer chains. Rate constants are calculated with the B3LYP/6-311 + G(d,p)//B3LYP/6-31 + G(d), BMK/6-311 + G(d,p)//B3LYP/6-31 + G(d), and MPWB1K/6-311 + G(d,p)//B3LYP/6-31 + G(d) methodologies via the standard transition state theory. We show that due to the proximity of the –NH and carbonyl groups on the syndiotactic propagating dimeric and trimeric chains, the alcohol can stabilize the corresponding transition states by forming a bridge between these functionalities and accelerate this path more than its isotactic counterpart. In agreement with experiment, the increase in the syndiotactic PNIPAM and the acceleration of the reaction in the presence of t-BuOH is predicted with all the DFT functionals utilized in this study.

Electronic structure and band gap of zinc spinel oxides beyond LDA: ZnAl2O4, ZnGa2O4 and ZnIn2O4

H. Dixit, N. Tandon, R. Saniz, S. Cottenier, D. Lamoen, B. Partoens, V. Van Speybroeck, M. Waroquier
New Journal of Physics
13, 063002
2011
A1

Abstract 

We examine the electronic structure of the family of ternary zinc spinel oxides ZnX2O4 (X=Al, Ga and In). The band gap of ZnAl2O4 calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.8–3.9 eV. The DFT band gap of ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental value of 4.4–5.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl2O4 probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified Becke–Johnson (MBJ) potential approximation, to calculate the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl2O4, the predicted band gap values are >6 eV, i.e. ~2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.

Stereoselective synthesis of cis-3,4-disubstituted piperidines through ring transformation of 2-(2-mesyloxyethyl)azetidines

K. Mollet, S. Catak, M. Waroquier, V. Van Speybroeck, M. D'Hooghe, N. De Kimpe
Journal of Organic Chemistry
76 (20), 8364–8375
2011
A1

Abstract 

The reactivity of 2-(2-mesyloxyethyl)azetidines, obtained through monochloroalane reduction and mesylation of the corresponding β-lactams, with regard to different nucleophiles was evaluated for the first time, resulting in the stereoselective preparation of a variety of new 4-acetoxy-, 4-hydroxy-, 4-bromo-, and 4-formyloxypiperidines. During these reactions, transient 1-azoniabicyclo[2.2.0]hexanes were prone to undergo an SN2-type ring opening to afford the final azaheterocycles, which was rationalized by means of a detailed computational analysis. This approach constitutes a convenient alternative for the known preparation of 3,4-disubstituted 5,5-dimethylpiperidines, providing an easy access to the 5,5-nor-dimethyl analogues as valuable templates in medicinal chemistry. Furthermore, cis-4-bromo-3-(phenoxy or benzyloxy)piperidines were elaborated into the piperidin-3-one framework via dehydrobromination followed by acid hydrolysis.

Reactivity of Activated versus Nonactivated 2-(Bromomethyl)aziridines with respect to Sodium Methoxide: a Combined Computational and Experimental Study

H. Goossens, K. Vervisch, S. Catak, S. Stankovic, M. D'Hooghe, F. De Proft, P. Geerlings, N. De Kimpe, M. Waroquier, V. Van Speybroeck
Journal of Organic Chemistry
76 (21), 8698-8709
2011
A1

Abstract 

The difference in reactivity between the activated 2-bromomethyl-1-tosylaziridine and the non-activated 1-benzyl-2-(bromomethyl)aziridine with respect to sodium methoxide was analyzed by means of DFT calculations within the supermolecule approach, taking into account explicit solvent molecules. In addition, the reactivity of epibromohydrin with regard to sodium methoxide was assessed as well. The barriers for direct displacement of bromide by methoxide in methanol are comparable for all three heterocyclic species under study. However, ring opening was found to be only feasible for the epoxide and the activated aziridine, and not for the non-activated aziridine. According to these computational analyses, the synthesis of chiral 2-substituted 1-tosylaziridines can take place with inversion (through ring opening/ring closure) or retention (through direct bromide displacement) of configuration upon treatment of the corresponding 2-(bromomethyl)aziridines with one equivalent of a nucleophile, whereas chiral 2-substituted 1-benzylaziridines are selectively obtained with retention of configuration (via direct bromide displacement). Furthermore, the computational results showed that explicit accounting for solvent molecules is required to describe the free energy profile correctly. To verify the computational findings experimentally, chiral 1-benzyl-2-(bromomethyl)aziridines and 2-bromomethyl-1-tosylaziridines were treated with sodium methoxide in methanol. The presented work concerning the reactivity of 2-bromomethyl-1-tosylaziridine stands in contrast to the behaviour of the corresponding 1-tosyl-2-(tosyloxymethyl)aziridine with respect to nucleophiles, which undergoes a clean ring-opening/ring-closure process with inversion of configuration at the asymmetric aziridine carbon atom.

Pages

Subscribe to RSS - M. Waroquier