M. Waroquier

Combined Electron Magnetic Resonance and Density Functional Theory Study of 10 K X-Irradiated β-d-Fructose Single Crystals

M.A. Tarpan, E. Sagstuen, E. Pauwels, H. Vrielinck, M. Waroquier, F. Callens
Journal of Physical Chemistry A
112 (17) , 3898-3905
2008
A1

Abstract 

Primary free radical formations in fructose single crystals X-irradiated at 10 K were investigated at the same temperature using X-band Electron Paramagnetic Resonance (EPR), Electron Nuclear Double Resonance (ENDOR) and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three principal crystallographic planes and a fourth skewed plane allowed the unambiguous determination of five proton hyperfine coupling tensors. From the EIE studies, these hyperfine interactions were assigned to three different radicals, labeled T1, T1* and T2. For the T1 and T1* radicals, the close similarity in hyperfine coupling tensors suggests that they are due to the same type of radical stabilized in two slightly different geometrical conformations. Periodic density functional theory calculations were used to aid the identification of the structure of the radiation-induced radicals. For the T1/T1* radicals a C3 centered hydroxyalkyl radical model formed by a net H abstraction is proposed. The T2 radical is proposed to be a C5 centered hydroxyalkyl radical, formed by a net hydrogen abstraction. For both radicals, a very good agreement between calculated and experimental hyperfine coupling tensors was obtained.

Recent theoretical insights into the role of the zeolite framework on methanol-to-olefin conversion

D. Lesthaeghe, V. Van Speybroeck, M. Waroquier
Studies in Surface Science and Catalysis
174, Part A, 741-744
2008
P1

Abstract 

The two major conflicting proposals in the methanol-to-olefin process are thoroughly investigated and compared using hybrid multi-level modeling techniques. This investigation leads to the absolute rejection of the intensively studied direct mechanisms and provides a successful alternative catalytic cycle as well as additional insight into the hydrocarbon pool proposal.

Evidence for a Grotthuss-like mechanism in the formation of the rhamnose alkoxy radical based on periodic DFT calculations

E. Pauwels, R. Declerck, V. Van Speybroeck, M. Waroquier
Radiation Research
169 (1), 8-18
2008
A1

Abstract 

Pauwels, E., Declerck, R., Van Speybroeck, V. and Waroquier, M. Evidence for a Grotthuss-Like Mechanism in the Formation of the Rhamnose Alkoxy Radical Based on Periodic DFT Calculations. Radiat. Res. 169, 8-18 (2008). Molecular modeling adopting a periodic approach based on density functional theory (DFT) indicates that a Grotthuss-like mechanism is active in the formation of the radiation-induced alkoxy radical in alpha-l-rhamnose. Starting from an oxidized crystal structure, a hydroxyl proton is transferred along an infinite hydrogen bond chain pervading the entire crystal. The result of this proton shuttling mechanism is a stable radical species dubbed RHop. Only after several reorientations of crystal waters and hydroxyl groups, the more stable radical form RO4 is obtained, which differs in structure from the former by the absence of only one hydrogen bond. Calculations of the energetics associated with the mechanism as well as simulated spectroscopic properties reveal that different variants of the rhamnose alkoxy radical can be observed depending on the temperature of irradiation and consecutive EPR measurement. Cluster calculations on both radical variants provide hyperfine coupling and g tensors that are in good agreement with two independent experimental measurements at different temperatures.

Molecular Environment and Temperature Dependence of Hyperfine Interactions in Sugar Crystal Radicals from First Principles

R. Declerck, E. Pauwels, V. Van Speybroeck, M. Waroquier
Journal of Physical Chemistry B
112 (5), 1508 -1514
2008
A1

Abstract 

The effect of the molecular environment and the temperature dependence of hyperfine parameters in first principles calculations in α-d-glucose and β-d-fructose crystal radicals have been investigated. More specifically, we show how static (0 K) cluster in vacuo hyperfine calculations, commonly used today, deviate from more advanced molecular dynamics calculations at the experimental temperature using periodic boundary conditions. From the latter approach, more useful information can be extracted, allowing us to ascertain the validity of proposed molecular models.

Carbon-centered radical addition and beta-scission reactions: Modeling of activation energies and pre-exponential factors

M. Sabbe, M-F. Reyniers, V. Van Speybroeck, M. Waroquier, G.B. Marin
ChemPhysChem
9 (1), 124-140
2008
A1

Abstract 

A consistent set of group additive values Delta GAV degrees for 46 groups is derived, allowing the calculation of rate coefficients for hydrocarbon radical additions and beta-scission reactions. A database of 51 rate coefficients based on CBS-QB3 calculations with corrections for hindered internal rotation was used as training set. The results of this computational method agree well with experimentally observed rate coefficients with a mean factor of deviation of 3, as benchmarked on a set of nine reactions. The temperature dependence on the resulting Delta GAV degrees s in the broad range of 300-1300K is limited to +/- 4.5 kJmol(-1) on activation energies and to +/- 0.4 on logA (A: pre-exponential factor) for 90% of the groups. Validation of the Delta GAV degrees s was performed for a test set of 13 reactions. In the absence of severe steric hindrance and resonance effects in the transition state, the rate coefficients predicted by group additivity are within a factor of 3 of the CBS-QB3 ab initio rate coefficients for more than 90% of the reactions in the test set. It can thus be expected that in most cases the GA method performs even better than standard DFT calculations for which a deviation factor of 10 is generally considered to be acceptable.

Open Access version available at UGent repository

Using elementary reactions to model growth processes of polyaromatic hydrocarbons under pyrolysis conditions of light feedstocks

K. Hemelsoet, V. Van Speybroeck, K.M. Van Geem, G.B. Marin, M. Waroquier
Molecular Simulation
34 (2) ,193-199
2008
A1

Abstract 

Density functional theory results are presented for elementary steps leading to coke growth within a steam cracking unit. The discussed pathway starts from toluene and ultimately, 1-methylnaphthalene is formed. In order to find the rate determining step for coke formation, the pseudo first-order rate coefficients of the various steps are compared taking into account the concentrations of diverse coke precursors. The influence of the polyaromatic environment is studied for a large set of methylated polycyclic aromatic molecules, by means of carbon–hydrogen bond dissociation enthalpy values. Subsequent hydrogen abstraction reactions at the methylated polyaromatics, by a methyl radical, are also examined. The abstraction is found to preferentially occur at the larger systems and is in general faster compared to abstractions at the analogous non-methylated species.

Calculating Reaction Rates with Partial Hessians: Validation of the Mobile Block Hessian Approach

A. Ghysels, V. Van Speybroeck, T. Verstraelen, D. Van Neck, M. Waroquier
Journal of Chemical Theory and Computation (JCTC)
4 (4) 614-625
2008
A1

Abstract 

In an earlier paper, the authors have developed a new method, the mobile block Hessian (MBH), to accurately calculate vibrational modes for partially optimized molecular structures [J. Chem. Phys. 2007, 126 (22), 224102]. The proposed procedure remedies the artifact of imaginary frequencies, occurring in standard frequency calculations, when parts of the molecular system are optimized at different levels of theory. Frequencies are an essential ingredient in predicting reaction rate coefficients due to their input in the vibrational partition functions. The question arises whether the MBH method is able to describe the chemical reaction kinetics in an accurate way in large molecular systems where a full quantum chemical treatment at a reasonably high level of theory is unfeasible due to computational constraints. In this work, such a validation is tested in depth. The MBH method opens a lot of perspectives in predicting accurate kinetic parameters in chemical reactions where the standard full Hessian procedure fails.

The Rise and Fall of Direct Mechanisms in Methanol-to-Olefin Catalysis:  An Overview of Theoretical Contributions

D. Lesthaeghe, V. Van Speybroeck, G.B. Marin, M. Waroquier
Industrial & Engineering Chemistry Research
46 (26), 8832-8838
2007
A1

Abstract 

Over the past 30 years, the methanol-to-olefin (MTO) process on acidic zeolites has been subject to a vast number of studies from both industrial and academic researchers, leading to numerous controversies regarding the most probable reaction mechanism. Improvement of computational facilities during the past decade led to a sudden boost of theoretical contributions that, when considered individually, all seemed to provide reasonable evidence for partial pathways of the commonly proposed direct mechanisms. Not only the reactions suggested by experimental studies were investigated, but in addition novel potential routes were discovered by theoreticians as well. However, when all of the individual reactions scattered throughout the literature were recently combined, theoretically obtained rate coefficients turned out to show the exact opposite, that is, the complete failure of the direct mechanisms to produce ethylene from methanol only. In this paper, we give a detailed overview of the theoretical contributions that initially supported the direct mechanism proposal, but which finally culminated in its demise.

Density Functional Theory Study of Free-Radical Polymerization of Acrylates and Methacrylates:  Structure−Reactivity Relationship

I. Değirmenci, D. Avci, V. Aviyente, K. Van Cauter, V. Van Speybroeck, G.B. Marin, M. Waroquier
Macromolecules
40 (26), 9590–9602
2007
A1

Abstract 

Radical polymerization processes occur through a complex network of many different reactions. It is well-known that the polymerization rate is directly related to the monomer structure. The experimental polymerizability behavior is expressed as kp/kt1/2, where kp is the rate coefficient of propagation and kt is the rate coefficient of termination. In this study, the reactivity of a series of acrylates and methacrylates is modeled in order to understand the effect of the pendant group size, the polarity of a pendant group, and the nature of the pendant group (linear vs cyclic) on their polymerizability. The geometries and frequencies are calculated with the B3LYP/6-31+G(d) methodology whereas the energetics and kinetics of these monomers have been studied using the two-component BMK/6-311+G(3df,2p)//B3LYP/6-31+G(d) level of theory. For rotations about forming/breaking bonds in the transition state, an uncoupled scheme for internal rotations has been applied with potentials determined at the B3LYP/6-31+G(d) level. Generally the rate constants for propagation kp mimic the qualitative polymerization trend of the monomers modeled and can be used with confidence in predicting the polymerizability behavior of acrylates. However in the case of 2-dimethylaminoethyl acrylate, chain transfer is found to play a major role in inhibiting the polymerization. On the other hand, the disproportionation reaction turns out to be too slow to be taken into consideration as a termination reaction.

Surface segregation in CuPt alloys by means of an improved modified embedded atom method

M. Schurmans, J. Luyten, C. Creemers, R. Declerck, M. Waroquier
Physical Review B
76 (17), 174208
2007
A1

Abstract 

We present a procedure to investigate surface structures in CuPt alloys by combining the modified embedded atom method (MEAM) and the cluster expansion method (CEM). While the MEAM provides structural information for the description of extended anisotropic defects, the CEM improves the ability to correctly reproduce the relevant ground state structures in agreement with ab initio data. The procedure is validated with the reproduction of surface energies of pure Cu and Pt, the prediction of TC for order-disorder transitions, the surface and segregation energies in ordered CuPt alloys, and Monte Carlo (MC) simulations of temperature-dependent surface segregation profiles. A complete MEAM-CEM/MC study of the surface segregation in Cu3Pt, CuPt, and CuPt3 alloys is presented, engaging only 11 composition- and volume-independent alloy-specific parameters. Results are critically compared with experimental data from literature and with an independent set of ab initio periodic density functional theory calculations.

Pages

Subscribe to RSS - M. Waroquier