M. Waroquier

Ab initio calculation of entropy and heat capacity of gas-phase n-alkanes with hetero-elements O and S: Ethers/alcohols and sulfides/thiols

P. Vansteenkiste, T. Verstraelen, V. Van Speybroeck, M. Waroquier
Chemical Physics
328 (1-3), 251-258
2006
A1

Abstract 

In this paper, the performance of the one-dimensional hindered rotor approach (1D-HR) is evaluated for n-alkanes with hetero-elements O or S. The internal rotations in these molecules show a behavior distinct from those in n-alkanes, for which 1D-HR is a cost-efficient method to describe the thermochemical features (entropy and heat capacity). It turns out that also for ethers, alcohols, sulfides and thiols this approach gives a satisfactory experimental agreement. This work confirms earlier results, and consolidates the assumption that the 1D-HR model is highly suitable for reproducing thermodynamic properties of single chain molecules, and that multi-dimensional coupled hindered rotor approaches (nD-HR) are not necessarily required for attaining high accuracy. Moreover, it seems that the 1D-HR results are almost independent of the details of the level of theory.

Quasiparticle properties in a density-functional framework

D. Van Neck, S. Verdonck, G. Bonny, P.W. Ayers, M. Waroquier
Physical Review A
74 (4), 042501
2006
A1

Abstract 

We propose a framework to construct the ground-state energy and density matrix of an N-electron system by solving a self-consistent set of single-particle equations. The method can be viewed as a nontrivial extension of the Kohn-Sham scheme (which is embedded as a special case). It is based on separating the Green’s function into a quasiparticle part and a background part, and expressing only the background part as a functional of the density matrix. The calculated single-particle energies and wave functions have a clear physical interpretation as quasiparticle energies and orbitals.

An assessment of theoretical procedures for predicting the thermochemistry and kinetics of hydrogen abstraction by methyl radical from benzene

K. Hemelsoet, D. Moran, V. Van Speybroeck, M. Waroquier, L. Radom
Journal of Physical Chemistry A
110 (28), 8942-8951
2006
A1

Abstract 

The reaction enthalpy (298 K), barrier (0 K), and activation energy and preexponential factor (600−800 K) have been examined computationally for the abstraction of hydrogen from benzene by the methyl radical, to assess their sensitivity to the applied level of theory. The computational methods considered include high-level composite procedures, including W1, G3-RAD, G3(MP2)-RAD, and CBS-QB3, as well as conventional ab initio and density functional theory (DFT) methods, with the latter two classes employing the 6-31G(d), 6-31+G(d,p) and/or 6-311+G(3df,2p) basis sets, and including ZPVE/thermal corrections obtained from 6-31G(d) or 6-31+G(d,p) calculations. Virtually all the theoretical procedures except UMP2 are found to give geometries that are suitable for subsequent calculation of the reaction enthalpy and barrier. For the reaction enthalpy, W1, G3-RAD, and URCCSD(T) give best agreement with experiment, while the large-basis-set DFT procedures slightly underestimate the endothermicity. The reaction barrier is slightly more sensitive to the choice of basis set and/or correlation level, with URCCSD(T) and the low-cost BMK method providing values in close agreement with the benchmark G3-RAD value. Inspection of the theoretically calculated rate parameters reveals a minor dependence on the level of theory for the preexponential factor. There is more sensitivity for the activation energy, with a reasonable agreement with experiment being obtained for the G3 methods and the hybrid functionals BMK, BB1K, and MPW1K, especially in combination with the 6-311+G(3df,2p) basis set. Overall, the high-level G3-RAD composite procedure, URCCSD(T), and the cost-effective DFT methods BMK, BB1K, and MPW1K give the best results among the methods assessed for calculating the thermochemistry and kinetics of hydrogen abstraction by the methyl radical from benzene.

Study of Rhamnose Radicals in the Solid State Adopting a Density Functional Theory Cluster Approach

E. Pauwels, V. Van Speybroeck, M. Waroquier
Journal of Physical Chemistry A
110 (14) , 6504-6513
2006
A1

Abstract 

A theoretical study is performed on the radiation-induced radicals in crystalline α-l-rhamnose, using density functional theory (DFT) calculations. Irrespective of earlier structural assignments, a host of possible radical models is examined in search for a structure that accurately reproduces experimental electron paramagnetic resonance (EPR) properties. A cluster approach is followed, incorporating all hydrogen bond interactions between radical and crystalline environment. Hyperfine coupling tensors as well as g tensors are determined and a comparison is made with available experimental data. Three carbon-centered hydroxyalkyl radicals are validated, in accordance with experimental suggestions for their structure. The occurrence of a carbon-centered oxygen anion radical for one of the radical species is rejected on theoretical grounds, and instead an altered hydroxyalkyl structure is suggested. Our cluster calculations are able to determine g and hyperfine tensors for the oxygen-centered alkoxy radical in rhamnose, in accordance with one of the two measurements for this species. For all radical models, quantitative agreement with experimental hyperfine tensors is obtained by performing full cluster DFT calculations. The inclusion of the molecular environment for the determination of this EPR property proved to be essential.

Unexpected Four-Membered over Six-Membered Ring Formation during the Synthesis of Azaheterocyclic Phosphonates: Experimental and Theoretical Evaluation

V. Van Speybroeck, K. Moonen, K. Hemelsoet, C.V. Stevens, M. Waroquier
JACS (Journal of the American Chemical Society)
128 (26), 8468-8478
2006
A1

Abstract 

The cyclization of functionalized aminophosphonates is studied on both experimental and theoretical grounds. In a recently described route to phosphono-β-lactams [Stevens C. V.; Vekemans, W.; Moonen, K.; Rammeloo, T. Tetrahedron Lett. 2003, 44, 1619], it was found that starting from an ambident allylic anion only four-membered rings were formed without any trace of six-membered lactams. New anion trapping experiments revealed that the γ-anion is highly reactive in intermolecular reactions. Ab initio calculations predict higher reaction barriers for the γ-anion due to restricted rotation about the C−N bond and due to highly strained transition states during ring closure. The sodium or lithium counterion, explicit dimethyl ether solvent molecules, and bulk solvent effects were properly taken into account at various levels of theory.

X- (X = O, S) Ions in Alkali Halide Lattices through Density Functional Calculations. 1. Substitutional Defect Models

F. Stevens, H. Vrielinck, V. Van Speybroeck, E. Pauwels, F. Callens, M. Waroquier
Journal of Physical Chemistry B
110 (16), 8204–8212
2006
A1

Abstract 

Monoatomic X- (X = O, S) chalcogen centers in MZ (M = Na, K, Rb and Z = Cl, Br, I) alkali halide lattices are investigated within the framework of density functional theory with the principal aim to establish defect models. In electron paramagnetic resonance (EPR) experiments, X- defects with tetragonal, orthorhombic, and monoclinic g-tensor symmetry have been observed. In this paper, models in which X- replaces a single halide ion, with a next nearest neighbor and a nearest neighbor halide vacancy, are validated for the X- centers with tetragonal and orthorhombic symmetry, respectively. As such defect models are extended, the ability to reproduce experimental data is a stringent test for various computational approaches. Cluster in vacuo and embedded cluster schemes are used to calculate energy and EPR parameters for the two vacancy configurations. The final assignment of a defect structure is based on the qualitative and quantitative reproduction of experimental g and (super)hyperfine tensors.

Density Functional Investigation of High-Spin XY (X = Cr, Mo, W and Y = C, N, O) Molecules

F. Stevens, I. Carmichael, F. Callens, M. Waroquier
Journal of Physical Chemistry A
110 (14), 4846-4853
2006
A1

Abstract 

The performance of a density functional theory approach in calculating the equilibrium bond length, dipole moment, and harmonic vibrational frequency in a series of group 6 (Cr, Mo, W) transition metal-containing diatomic molecules is evaluated. Using flexible basis sets comprised of Slater type functions, a wide range of exchange-correlation functionals is investigated. Comparing with known experimental values and published results from high-level theoretical calculations, the most suitable functional form is selected. The importance of relativistic effects is checked, and predictions are made for several unknown dipole moments. The best agreement with experimental parameters is obtained when using a general gradient approximation, while special and hybrid functional forms give less accurate results.

Regio- and stereospecific ring opening of 1,1-dialkyl-2- (aryloxymethyl)aziridinium salts by bromide

M. D'Hooghe, V. Van Speybroeck, M. Waroquier, N. De Kimpe
Chemical Communications
14, 1554 -1556
2006
A1

Abstract 

Enantiomerically pure 2-(aryloxymethyl)aziridines are efficiently transformed into chiral N-(2-bromo-3-aryloxypropyl)amines via a regio- and stereospecific ring opening of the intermediate aziridinium salts, and the experimental results are rationalized on the basis of some high level ab initio calculations

First-principles calculation of the EPR g tensor in extended periodic systems

R. Declerck, V. Van Speybroeck, M. Waroquier
Physical Review B
73 (11), 115113
2006
A1

Abstract 

A method for the ab initio prediction of the EPR g tensor for paramagnetic defects in systems under periodic boundary conditions is presented. It is based on density functional theory and the pseudopotential approximation. The formalism is applicable to crystalline and amorphous insulators, as well as to isolated molecules using a supercell technique. The method is validated by comparison with a well-established theoretical approach and experimental data for a series of small isolated molecules. Finally the EPR parameters of an O3− defect in a KCl lattice are evaluated following the new procedure, yielding results in good agreement with experiment and at an attractive computational cost.

Radiation-induced radicals in alpha-D-glucose: Comparing DFT cluster calculations with magnetic resonance experiments

E. Pauwels, V. Van Speybroeck, M. Waroquier
Spectrochimica Acta Part A (Mol. & biomol.)
63 (4), 795-801
2006
A1

Abstract 

Using density functional theory (DFT) calculations, an enhanced theoretical examination was made of the radiation-induced radicals in alpha-d-glucose. For the carbon-centred radicals in this sugar, the effect of the model space on the radical geometry as well as on the calculated radical hyperfine coupling tensors was examined. The findings were compared with previously published tensors, as determined by electron paramagnetic resonance (EPR) experiments and single molecule DFT calculations. A cluster approach was adopted, in which intermolecular interactions (predominantly hydrogen bonds) between the radical species and its environment were explicitly incorporated. This substantially improved the correspondence with experimental findings in comparison with single molecule calculations of an earlier examination. In a direct comparison between both computational methods for the glucose radicals, it was shown that the extent of the model space plays an important part in the determination of the radical geometry. Furthermore, the model space also has an impact on the calculated hyperfine coupling tensors. Full cluster EPR calculations, in which the paramagnetic properties are calculated for the entire model space of the cluster, give an excellent agreement with the experimental EPR measurements.

Open Access version available at UGent repository

Pages

Subscribe to RSS - M. Waroquier