M. Waroquier

Zeolite Shape-Selectivity in the gem-Methylation of Aromatic Hydrocarbons

D. Lesthaeghe, B. De Sterck, V. Van Speybroeck, G.B. Marin, M. Waroquier
Angewandte Chemie int. Ed.
46 (8), 1311-1314
2007
A1

Abstract 

The kind of olefins obtained from methanol in zeolites is strongly dependent on specific combinations of the intermediate organic hydrocarbon-pool species and zeolite topology (see picture). If the cage is too large, neutral species are favored over reactive cations. If the cage is too small, transition-state-shape selectivity poses severe limitations on the reactivity of bulkier species.

Global DFT-Based Reactivity Indicators:  An Assessment of Theoretical Procedures in Zeolite Catalysis

K. Hemelsoet, D. Lesthaeghe, V. Van Speybroeck, M. Waroquier
Journal of Physical Chemistry C
111 (7), 3028-3037
2007
A1

Abstract 

The dependence of global reactivity descriptors on electronic structure method as well as basis set is investigated for typical reactions in zeolite catalysis. This research is especially focused on hard−hard interactions between small probe molecules (such as chloromethane, methanol, ethylene, and propene) and different zeolite clusters containing both oxygen and amine functionalities. The performance of novel hybrid metafunctionals (such as BMK and MPWB1K) on crucial reactivity predictors is assessed through comparison with both Hartree−Fock and B3-LYP results. For the complex bifunctional zeolite systems, we find accurate results using any of the DFT functionals, in conjunction with a basis set of at least double-ζ quality further augmented with both polarization and diffuse functions. Reactivity sequences, based on global softness differences as well as activation hardness values, are generally found to be independent of the level of theory whenever a DFT functional is used.

Ab Initio Study of Free-Radical Polymerization:  Defect Structures in Poly(vinyl chloride)

K. Van Cauter, B. Van den Bossche, V. Van Speybroeck, M. Waroquier
Macromolecules
40 (4), 1321-1331
2007
A1

Abstract 

The main reaction routes that lead to the formation of structural defects in PVC are studied on a theoretical basis with the BMK/6-311+G(3df,2p)//B3LYP/6-31+G(d) method. All studied reactions can be classified into four classes:  the reactions following a head-to-head addition, intramolecular H-transfer (backbiting), and chain transfer reactions to polymer and to monomer. The head-to-tail propagation is the reference reaction for estimating the probability of the reaction routes leading to defect formation. Variations of chain length of the reacting polymer chain were taken into account in the calculations, leading to more than 100 studied reactions. The ab initio kinetic parameters, combined with typical monomer and polymer concentrations during suspension polymerization, serve as an input for the calculation of the defect concentrations that can be compared to the experimental data. This work supports the overall mechanism of defect formation during vinyl chloride polymerization as established experimentally.

Spin-Polarized Conceptual Density Functional Theory Study of the Regioselectivity in Ring Closures of Radicals

B. Pinter, F. De Proft, V. Van Speybroeck, K. Hemelsoet, M. Waroquier, E. Chamorro, T. Veszpremi, P. Geerlings
Journal of Organic Chemistry
72 (2), 348-356
2007
A1

Abstract 

The regioselectivity of ring-forming radical reactions is investigated within the framework of the so-called spin-polarized conceptual density functional theory. Two different types of cyclizations were studied. First, a series of model reactions of alkyl- and acyl-substituted radicals were investigated. Next, attention was focused on the radical cascade cyclizations of N-alkenyl-2-aziridinylmethyl radicals (a three-step mechanism). In both of these reactions, the approaching radical (carbon or nitrogen centered) adds to a carbon−carbon double bond within the same molecule to form a radical ring compound. In this process, the number of electrons is changing from a local point of view (a charge transfer occurs from one part of the molecule to another one) at constant global spin number Ns (both the reactant and the product ring compound are in the doublet state). It is shown that the experimentally observed regioselectivities for these ring-closure steps can be predicted using the spin-polarized Fukui functions for radical attack, (r).

Four-Membered Heterocycles with a Carbon−Heteroatom Exocyclic Double Bond at the 3-Position:  Puckering Potential and Thermodynamic Properties

P. Vansteenkiste, V. Van Speybroeck, G. Verniest, N. De Kimpe, M. Waroquier
Journal of Physical Chemistry A
111 (14), 2797-2803
2007
A1

Abstract 

Despite the specific importance of four-membered heterocycles with a carbon−heteroatom double bond at the 3-position in organic and medicinal chemistry, little attention has been given up to now to theoretical computational studies on these molecules. However, the overall geometry, and degree of ring puckering especially, could significantly influence the reactivity and biological properties of these four-membered ring compounds. In this paper, focus is made on the influence of different substituents on the equilibrium geometry, ring puckering potential, and thermodynamic quantities. It was found that these properties are mainly affected by the heteroatom (oxygen, nitrogen, sulfur, phosphorus) contained in the ring skeleton. Moreover, the correct description of the puckering potential with the hindered rotor treatment leads to substantial corrections on the thermodynamic properties in the harmonic oscillator approximation.

First-principles calculations of hyperfine parameters with the Gaussian and augmented-plane-wave method: Application to radicals embedded in a crystalline environment

R. Declerck, E. Pauwels, V. Van Speybroeck, M. Waroquier
Physical Review B
74 (24), 245103
2006
A1

Abstract 

A method for the calculation of hyperfine parameters in extended systems under periodic boundary conditions is presented, using the Gaussian and augmented-plane-wave density functional method, and implemented in QUICKSTEP. In order to increase the efficiency in larger systems, a hybrid scheme is proposed, in which an all-electron treatment for the nuclei of interest and a pseudopotential approximation for the remaining atoms in the simulation cell are combined. The method is validated first by comparing the hyperfine parameters for a selection of atoms and small molecules (using a supercell technique) with other theoretical methods and experimental data from literature. As a typical example of a periodic system where our hybrid method can be applied, the hyperfine parameters of the well-characterized R2 L-α-alanine derived radical are evaluated, yielding results in excellent agreement with the available experimental data.

Ab initio thermochemistry and Kinetics of Hydrogen Abstraction by Methyl Radical from Polycyclic Aromatic Hydrocarbons

K. Hemelsoet, V. Van Speybroeck, D. Moran, G.B. Marin, L. Radom, M. Waroquier
Journal of Physical Chemistry A
110 (50), 13624-13631
2006
A1

Abstract 

Thermodynamic and kinetic properties relating to hydrogen abstraction by methyl radical from various sites in polycyclic aromatic hydrocarbons (PAHs) have been investigated. The reaction enthalpies (298 K), barriers (0 K), and activation energies and pre-exponential factors (700−1100 K), have been calculated by means of density functional theory, specifically with B3-LYP/6-311G(d,p) geometries, followed by BMK/6-311+G(3df,2p) single-point energy calculations. For uncongested sites in the PAHs, a reasonable correlation is obtained between reactivities (as characterized by the reaction barriers) and reaction enthalpies. This is reflected in a Bell−Evans−Polanyi (BEP) relationship. However, for congested sites, abstraction is accompanied both by lower reaction enthalpies (due to relief of steric strain) and also by reduced reactivities (due to significantly increased steric hindrance effects in the transition structures), so that the BEP relationship does not hold. In addition, the reaction enthalpies and kinetic parameters for the series of linear acenes indicate that abstraction is more difficult from the central rings.

Characterization of the electron propagator with a GW-like self-energy in closed-shell atoms

S. Verdonck, D. Van Neck, P.W. Ayers, M. Waroquier
Physical Review A
74 (6), 062503
2006
A1

Abstract 

The electron propagator is calculated for a set of closed-shell atoms using GW-like self-energies that contain the coupling of single-particle degrees of freedom with excited states in the framework of the random phase approximation. The effect of including exchange diagrams is investigated. Calculations are performed in the Hartree-Fock (HF) basis of the neutral atom. The HF continuum is taken into account using a discretization procedure, and the basis set limit is estimated using a systematic increase of basis set size. We check the approximation of taking the self-energy diagonal in the HF basis, and to what extent the extended Koopman’s theorem is fulfilled using an approximate self-energy. Finally we try to model the information contained in the propagator in terms of a functional containing Hartree-Fock quantities and demonstrate the feasibility of simultaneously reproducing the correlation and ionization energy of an underlying ab initio model.

Theoretical study on the alteration of fundamental zeolite properties by methylene functionalization

D. Lesthaeghe, G. Delcour, V. Van Speybroeck, G.B. Marin, M. Waroquier
Microporous and Mesoporous Materials
96 (1-3), 350-356
2006
A1

Abstract 

Following the recent boost of papers reporting synthesis of organic functionalized microporous and mesoporous materials, a detailed theoretical study was performed to probe the effect of organic functionalizations on certain fundamental properties in organosilicas from a microscopic viewpoint. The simplest functionalization of a bridging methylene unit was modeled in a zeolite MFI-type framework to serve as a model system for more complex organic moieties and other structures. Calculated adsorption energies for H2O and NH3 in methylenesilica reveal that the methylene functionalization increases the strength of the interaction of both probe molecules with the zeolite framework. Investigation of the combination of an ion-exchanged aluminum site containing a CH2-bridge demonstrates how the methylene moiety creates a steric obstruction for adsorbed alkali metal ions such as Li, Na and K, resulting in a weaker bond between these ions and the aluminum site. Finally, a study of proton mobility from a Brønsted acid site to a neighboring methylene bridge reveals that the acid proton will most likely migrate from the basic oxygen bridge to the methylene substitution. This implies that the combination of methylene moieties with aluminum impurities will lead to terminally bound methyl groups and cleavage of the hybrid organic–inorganic lattice.

Hydrocarbon Bond Dissociation Enthalpies: From Substituted Aromatics to Large Polyaromatics

V. Van Speybroeck, G.B. Marin, M. Waroquier
ChemPhysChem
7 (10), 2205-2214
2006
A1

Abstract 

Hydrocarbon-bond dissociation enthalpies (BDE) at 298 K are calculated for a set of hydrocarbons. An efficient method for calculating the BDE values is derived on the basis of a comparative study with experimental data. The methods considered are based on density functional theory (DFT) including the B3LYP, MPW1PW91, B3P86, B3PW91, MPW1P86, KMLYP, MPW1K and BMK functionals. The commonly known sequence for radical stability is quantified on the basis of BDE values. The recommended procedure is extrapolated to substituted aromatics and large polyaromatic hydrocarbons (PAHs) to obtain insight into the factors that govern the stability of the radicals. Furthermore it is shown that BDEs are also good reactivity descriptors for subsequent additions involving the formed radicals. Linear correlations, similar to classical Evans–Polanyi–Semenov plots, between the BDE and the reaction barriers for addition reactions with ethene, ethyne, propene, propyne and butadiene are found, as the exothermicity is primarily determined by the stability of the originating reactant radical.

Pages

Subscribe to RSS - M. Waroquier