B. Pinter, F. De Proft, V. Van Speybroeck, K. Hemelsoet, M. Waroquier, E. Chamorro, T. Veszpremi, P. Geerlings
Journal of Organic Chemistry
Abstract
The regioselectivity of ring-forming radical reactions is investigated within the framework of the so-called spin-polarized conceptual density functional theory. Two different types of cyclizations were studied. First, a series of model reactions of alkyl- and acyl-substituted radicals were investigated. Next, attention was focused on the radical cascade cyclizations of N-alkenyl-2-aziridinylmethyl radicals (a three-step mechanism). In both of these reactions, the approaching radical (carbon or nitrogen centered) adds to a carbon−carbon double bond within the same molecule to form a radical ring compound. In this process, the number of electrons is changing from a local point of view (a charge transfer occurs from one part of the molecule to another one) at constant global spin number Ns (both the reactant and the product ring compound are in the doublet state). It is shown that the experimentally observed regioselectivities for these ring-closure steps can be predicted using the spin-polarized Fukui functions for radical attack, (r).