K. Rijpstra

Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres: Part I - Adsorption of volatile polonium and bismuth on gold

E. A. Maugeri, J. Neuhausen, R. Eichler, R. Dressler, K. Rijpstra, S. Cottenier, D. Piguet, A. Vogele, D. Schumann, A. Bronselaer
RADIOCHIMICA ACTA
104 (11), 757-767
2016
A1

Abstract 

Polonium isotopes are considered the most hazardous radionuclides produced during the operation of accelerator driven systems (ADS) when lead-bismuth eutectic (LBE) is used as the reactor coolant and as the spallation target material. In this work the use of gold surfaces for capturing polonium from the cover gas of the ADS reactor was studied by thermochromatography. The results show that gaseous monoatomic polonium, formed in dry hydrogen, is adsorbed on gold at 1058 K. Its adsorption enthalpy was calculated as -250 +/- 7 kJ mol(-1), using a Monte Carlo simulation code. Highly volatile polonium species that were observed in similar experiments in fused silica columns in the presence of moisture in both inert and reducing gas were not detected in the experiments studying adsorption on gold surfaces. PoO2 is formed in both dry and moist oxygen, and its interaction with gold is characterized by transport reactions. The interaction of bismuth, present in large amounts in the atmosphere of the ADS, with gold was also evaluated. It was found that bismuth has a higher affinity for gold, compared to polonium, in an inert, reducing, and oxidizing atmosphere. This fact must be considered when using gold as a material for filtering polonium in the cover gas of ADS.

Ab initio study of the trapping of polonium on noble metals

K. Rijpstra, A. Van Yperen-De Deyne, E. A. Maugeri, J. Neuhausen, M. Waroquier, V. Van Speybroeck, S. Cottenier
Journal of Nuclear Materials
472, 35-42
2016
A1

Abstract 

In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

Open Access version available at UGent repository

Binary and Ternary Po-containing Molecules Relevant for LBE Cooled Reactors at Operating Temperature

A. Van Yperen-De Deyne, K. Rijpstra, M. Waroquier, V. Van Speybroeck, S. Cottenier
Journal of Nuclear Materials
458, 288-295
2015
A1

Abstract 

Quantum-chemical calculations at several levels of theory were used to assess the stability at different temperatures of a set of 13 binary and ternary Po-containing molecules that could possibly be formed in an environment with lead, bismuth, oxygen and water. The conclusions are that especially PoPb, PbPoO and PoOH and to a lesser extent Po2 and PoO are stable. These small molecules are therefore likely to be found near the Lead-Bismuth eutectic (LBE) coolant at operational temperatures in a heavy liquid metal cooled fission reactor. In contrast, Po3 and PoBi are unlikely to be present under the assumed conditions. Several stability criteria, such as the dissociation into free atoms or into molecular fragments at realistic Po-concentrations or in the thermodynamic limit are discussed at different temperatures. The results obtained with a medium level of theory (Density Functional Theory, PBE0 with relativistic effective core potentials) show good qualitative correspondence with calculations performed at a much higher level of theory (Multi Reference Configuration Interaction, with spin–orbit coupling and scalar relativistic Hamiltonian).

Open Access version available at UGent repository

Crystal structure prediction for supersaturated AZO : the case of Zn3Al2O6

K. Rijpstra, S. Cottenier, M. Waroquier, V. Van Speybroeck
CrystEngComm
2013 (15), 10440-10444
2013
A1

Abstract 

Increasing the Al concentration in Al-doped ZnO (AZO) is one way of improving the conductivity of this transparent conductive oxide (TCO). Beyond a certain concentration, an unwanted secondary phase develops with a low conductivity. Its stoichiometry is Zn3Al2O6, and its crystal structure has not yet been convincingly determined. By applying unbiased ab initio structure prediction tools, we predict the crystal structure of Zn3Al2O6 to be monoclinic with space group Pm. It can be described as a nanofabric, with one-dimensional Al2O3 wires penetrating a ZnO matrix. This crystal has a formation energy that is lower than any structure proposed before, and is consistent with all available experimental information. Knowledge of the nature of this phase can help to avoid its formation and therefore to engineer AZO crystals with an increased level of Al-doping and associated increased conductivity.

Solution Enthalpy of Po and Te in solid Lead-Bismuth Eutectic

K. Rijpstra, A. Van Yperen-De Deyne, J. Neuhausen, V. Van Speybroeck, S. Cottenier
Journal of Nuclear Materials
450 (1–3), 287–291
2014
A1

Abstract 

It is examined to which extent first-principles calculations can be used to collect a priori information on the solution enthalpy and solubility of Po in solid lead-bismuth eutectic (LBE). Such information can be helpful to limit the number of complicated experiments that are required to measure these properties. It is found that in the thermodynamic limit and at 0 K, Po does not dissolve in solid LBE. Its solution enthalpy is negative, in particular in Pb-rich environments, but competing compound-forming reactions are more exothermic. A clear correlation is found between the calculated solution enthalpies for Te in LBE and for Po in LBE, suggesting that Te-experiments can be used to map the expected behaviour for Po. The role of spin-orbit coupling as the major relativistic effect on the solution enthalpies of these heavy atoms is inspected.

Density Functional Theory as a tool to get more out of experimental data: case-studies for Al-Zn-O and for the interaction between Po and Pb-Bi-eutectic

K. Rijpstra
Fri, 29/08/2014
Faculty of Engineering and Architecture, Jozef Plateaustraat, Ghent

Pages

Subscribe to RSS - K. Rijpstra