F. Verstraete

Three-Legged Tree Tensor Networks with SU(2) and Molecular Point Group Symmetry

K. Gunst, F. Verstraete, D. Van Neck
Journal of Chemical Theory and Computation (JCTC)
15, 2996-3007
2019
A1

Abstract 

We extend the three-legged tree tensor network state (T3NS) [J.  Chem. Theory Comput. 2018, 14, 2026-2033] by including spin and the real abelian point group symmetries.  T3NS intersperses physical tensors with branching tensors.  Physical tensors have one physical index and at most two virtual indices.  Branching tensors have up to three virtual indices and no physical index. In this way, T3NS combines the low computational cost of matrix product states and their simplicity for implementing symmetries, with the better entanglement representation of tree tensor networks. By including spin and point group symmetries, more accurate calculations can be obtained with lower computational effort. We illustrate this by presenting calculations on the bis($\mu$-oxo) and $\mu-\eta^2:\eta^2$ peroxo isomers of $[\mathrm{Cu}_2\mathrm{O}_2]^{2+}$. The used implementation is available on github.

Open Access version available at UGent repository

T3NS: Three-Legged Tree Tensor Network States

K. Gunst, F. Verstraete, S. Wouters, Ö. Legeza, D. Van Neck
Journal of Chemical Theory and Computation
14 (4), pp 2026–2033
2018
A1

Abstract 

We present a new variational tree tensor network state (TTNS) ansatz, the three-legged tree tensor network state (T3NS). Physical tensors are interspersed with branching tensors. Physical tensors have one physical index and at most two virtual indices, as in the matrix product state (MPS) ansatz of the density matrix renormalization group (DMRG). Branching tensors have no physical index, but up to three virtual indices. In this way, advantages of DMRG, in particular a low computational cost and a simple implementation of symmetries, are combined with advantages of TTNS, namely incorporating more entanglement. Our code is capable of simulating quantum chemical Hamiltonians, and we present several proof-of-principle calculations on LiF, N$_2$, and the bis(μ-oxo) and μ–η$^2$:η$^2$ peroxo isomers of [Cu$_2$O$_2$]$^{2+}$.

Subscribe to RSS - F. Verstraete