V. Van Speybroeck

Cutting the cost of carbon capture: a case for carbon capture and utilization

L. Joos, J. Huck, V. Van Speybroeck, B. Smit
Faraday Discussions
192, 391-414
2016
A1

Abstract 

A significant part of the cost for Carbon Capture and Storage (CCS) is related to the compression of the captured CO2 to its supercritical state, at 150 bar and typically 99% purity. These stringent conditions may however not always be necessary for specific cases of Carbon Capture and Utilization (CCU). In this manuscript, we investigate how much the parasitic energy of an adsorbent-based carbon capture process may be lowered by utilizing CO2 at 1 bar and adapting the final purity requirement for CO2 from 99% to 70% or 50%. We compare different CO2 sources: the flue gases of coal-fired or natural gas-fired power plants and ambient air. We evaluate the carbon capture performance of over 60 nanoporous materials and determine the influence of the initial and final purity on the parasitic energy of the carbon capture process. Moreover, we demonstrate the underlying principles of the parasitic energy minimization in more detail using the commercially available NaX zeolite. Finally, the calculated utilization cost of CO2 is compared with reported prices for CO2 and published costs for CCS.

Open Access version available at UGent repository

A breathing zirconium metal-organic framework with reversible loss of crystallinity by correlated nanodomain formation

B. Bueken, F. Vermoortele, M.J. Cliffe, M.T. Wharmby, D. Foucher, J. Wieme, L. Vanduyfhuys, C. Martineau, N. Stock, F. Taulelle, V. Van Speybroeck, A.L. Goodwin, D. De Vos
Chemistry - A European Journal
2016, 22, 1-5
2016
A1

Abstract 

The isoreticular analogue of the metal–organic framework UiO-66(Zr), synthesized with the flexible trans-1,4-cyclohexanedicarboxylic acid as linker, shows a peculiar breathing behavior by reversibly losing long-range crystalline order upon evacuation. The underlying flexibility is attributed to a concerted conformational contraction of up to two thirds of the linkers, which breaks the local lattice symmetry. X-ray scattering data are described well by a nanodomain model in which differently oriented tetragonal-type distortions propagate over about 7–10 unit cells.

Suppression of the Aromatic Cycle in Methanol-to-Olefins Reaction over ZSM-5 by Post-Synthetic Modification Using Calcium

I. Yarulina, S. Bailleul, A. Pustovarenko, J. Ruiz-Martinez, K. De Wispelaere, J. Hajek, B.M. Weckhuysen, K. Houben, M. Baldus, V. Van Speybroeck, F. Kapteijn, J. Gascon
ChemCatChem
8 (19) 3057–3063
2016
A1

Abstract 

Incorporation of Ca in ZSM-5 results in a twofold increase of propylene selectivity (53 %), a total light-olefin selectivity of 90 %, and a nine times longer catalyst lifetime (throughput 792 gMeOH gcatalyst−1) in the methanol-to-olefins (MTO) reaction. Analysis of the product distribution and theoretical calculations reveal that post-synthetic modification with Ca2+ leads to the formation of CaOCaOH+ that strongly weaken the acid strength of the zeolite. As a result, the rate of hydride transfer and oligomerization reactions on these sites is greatly reduced, resulting in the suppression of the aromatic cycle. Our results further highlight the importance of acid strength on product selectivity and zeolite lifetime in MTO chemistry.

Ligand Addition Energies and the Stoichiometry of Colloidal Nanocrystals

M. Sluydts, K. De Nolf, V. Van Speybroeck, S. Cottenier, Z. Hens
ACS Nano
10 (1), 1462-1474
2016
A1

Abstract 

Experimental non-stoichiometries of colloidal nanocrystals such as CdSe and PbS are accounted for by attributing to each constituent atom and capping ligand a formal charge equal to its most common oxidation state to obtain an overall neutral nanocrystal. In spite of its apparent simplicity, little theoretical support of this approach - called here the oxidation-number sum rule - is present in the current literature. Here, we introduce the ligand addition energy, which we define as the energy gained or expended upon the transfer of one ligand from a reference state to a (metal-rich) solid surface. For the combination of CdSe, ZnSe and InP with either chalcogen, halogen or hydrochalcogen ligands, we compute successive ligand addition energies using ab initio methods and determine the thermodynamically stable surface composition as that composition where ligand addition turns endothermic. We find that the oxidation-number sum rule is valid in many situations, although exceptions occur for each material studied most notably when exposed to small oxidative ligands. In the case of InP violations are more severe, extending towards the entire chalcogen ligand family. In addition, we find that electronegativity rather than chemical hardness is a reasonable predictor for ligand addition energies, with the most electronegative ligands yielding the most exothermic addition energies. Finally, we argue that the ligand addition energy will be a most useful quantity for future computational studies on the structure, stability and reactivity of nanocrystal surfaces.

Towards molecular control of elementary reactions in zeolite catalysis by advanced molecular simulations mimicking operating conditions

K. De Wispelaere, S. Bailleul, V. Van Speybroeck
Catalysis Science & Technology
6, 2686 – 2705
2016
A1

Abstract 

Zeolites are the workhorses of today’s chemical industry. For decades they have been successfully applied, however many features of zeolite catalysis are only superficially understood and in particular the kinetics and mechanism of individual reaction steps at operating conditions. Herein we use state-of-the-art advanced ab initio molecular dynamics techniques to study the influence of catalyst topology and acidity, reaction temperature and the presence of additional guest molecules on elementary reactions. Such advanced modeling techniques provide complementary insight to experimental knowledge as the impact of individual factors on the reaction mechanism and kinetics of zeolite-catalyzed reactions may be unraveled. We study key reaction steps in the conversion of methanol to hydrocarbons, namely benzene and propene methylation. These reactions may occur either in a concerted or stepwise fashion, i.e. methanol directly transfers its methyl group to a hydrocarbon or the reaction goes through a framework-bound methoxide intermediate. The DFT-based dynamical approach enables mimicking reaction conditions as close as possible and studying the competition between two methylation mechanisms in an integrated fashion. The reactions are studied in the unidirectional AFI-structured H-SSZ-24, H-SAPO-5 and TON-structured H-ZSM-22 materials. We show that varying the temperature, topology, acidity and number of protic molecules surrounding the active site may tune the reaction mechanism at the molecular level. Obtaining molecular control is crucial in optimizing current zeolite processes and designing emerging new technologies bearing alternative feedstocks.

Open Access version available at UGent repository

Is the error on first-principles volume predictions absolute or relative?

K. Lejaeghere, L. Vanduyfhuys, T. Verstraelen, V. Van Speybroeck, S. Cottenier
Computational Materials Science
117, 390-396
2016
A1

Abstract 

Many benchmarks of density-functional theory with respect to experiment suggest the error on predicted equilibrium volumes to scale with the volume. Relative volume errors are therefore often used as a decisive argument to select one exchange-correlation functional over another. We show that the error on the volume (after correcting for systematic deviations) is only approximately relative. A simple analytic model, validated by rigorous Monte Carlo simulations, reveals that a more accurate error estimate can be derived from the inverse of the bulk modulus. This insight is not only instrumental for the selection or design of suitable functionals. It also calls for a new attitude towards computational errors: to report computational errors on electronic-structure calculations, identify systematic deviations and distinguish between relative and absolute effects. (C) 2016 Elsevier B.V. All rights reserved.

Open Access version available at UGent repository

Influence of solvation and dynamics on the mechanism and kinetics of nucleophilic aromatic substitution reactions in liquid ammonia

S.L. Moors, B. Brigou, D. Hertsen, P. Balazs, P. Geerlings, V. Van Speybroeck, S. Catak, F. De Proft
Journal of Organic Chemistry
81 (4), 1635-1644
2016
A1

Abstract 

The role of the solvent and the influence of dynamics on the kinetics and mechanism of the SNAr reaction of several halonitrobenzenes in liquid ammonia, using both static calculations and dynamic ab initio molecular dynamics simulations, are investigated. A combination of metadynamics and committor analysis methods reveals how this reaction can change from a concerted, one-step mechanism in gas phase to a stepwise pathway, involving a metastable Meisenheimer complex, in liquid ammonia. This clearly establishes, among others, the important role of the solvent and highlights the fact that accurately treating solvation is of crucial importance to correctly unravel the reaction mechanism. It is indeed shown that H-bond formation of the reacting NH3 with the solvent drastically reduces the barrier of NH3 addition. The halide elimination step, however, is greatly facilitated by proton transfer from the reacting NH3 to the solvent. Furthermore, the free energy surface strongly depends on the halide substituent and the number of electron-withdrawing nitro substituents.

Facile synthesis of cooperative acid-base catalysts by clicking cysteine and cysteamine on an ethylene-bridged periodic mesoporous organosilica

J. Ouwehand, J. Lauwaert, D. Esquivel, K. Hendrickx, V. Van Speybroeck, J.W. Thybaut, P. Van der Voort
European Journal of Inorganic Chemistry
2016, 13-14, 2144-2151
2016
A1

Abstract 

A Periodic Mesoporous Organosilica (PMO) containing ethylene bridges was functionalized in order to obtain a series of cooperative acid-base catalysts. A straightforward, single-step procedure was devised to immobilize cysteine and cysteamine on the support material via a photoinitiated thiol-ene click reaction. Likewise, PMO materials capped with hexamethyldisilazane (HMDS) were used to support both compounds. This resulted in different materials, where the amine site was promoted by carboxylic acid groups, surface silanol groups or both. The catalysts were tested in the aldol reaction of 4-nitrobenzaldehyde and acetone. It was found that silanol groups have a stronger promoting effect on the amine than the carboxylic acid group. The highest turnover frequency (TOF) was obtained for an amine functionalized material which only contained silanol promoting sites. The loading of the active sites also has a significant effect on the activity of the catalysts, which was rationalized based on a computational study.

Ab initio study of the trapping of polonium on noble metals

K. Rijpstra, A. Van Yperen-De Deyne, E. A. Maugeri, J. Neuhausen, M. Waroquier, V. Van Speybroeck, S. Cottenier
Journal of Nuclear Materials
472, 35-42
2016
A1

Abstract 

In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

Open Access version available at UGent repository

Systematic study of the chemical and hydrothermal stability of selected "stable" Metal Organic Frameworks

K. Leus, T. Bogaerts, J. De Decker, H. Depauw, K. Hendrickx, H. Vrielinck, V. Van Speybroeck, P. Van der Voort
Microporous and Mesoporous Materials
226, 110-116
2016
A1

Abstract 

In this work, the hydrothermal and chemical stability towards acids, bases, air, water and peroxides of Metal Organic Frameworks, that are commonly considered to be stable, is presented. As a proof of stability both the crystallinity and porosity are measured before and after exposure to the stress test. The major part of the MOFs examined in this study showed a good hydrothermal stability except for the UiO-67, NH2-MIL-101 (Al) and CuBTC material. The chemical stability towards acids and bases show a similar tendency and an ordering can be proposed as: MIL-101(Cr)>NH2-UiO-66>UiO-66>UiO-67>NH2-MIL-53>MIL-53(Al)>ZIF-8>CuBTC>NH2-MIL-101(Al). In the tests with the H2O2 solution most materials behaved poorly, only the UiO-66 and NH2-UiO-66 framework showed a good stability.

Pages

Subscribe to RSS - V. Van Speybroeck