S. Turner

Biocompatible Zr-based nanoscale MOFs coated with modified poly (epsilon-caprolactone) as anticancer drug carriers

M. Filippousi, S. Turner, K. Leus, P.I. Siafaka, E.D. Tseligka, M. Vandichel, S.G. Nanaki, I.S. Vizirianakis, D.N. Bikiaris, P. Van der Voort, G. Van Tendeloo
International Journal of Pharmaceutics
509, 1-2, 208-218


Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(epsilon-caprolactone) with D-alpha-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity. The drugs physical state and release rate was studied at 37 degrees C using Simulated Body Fluid. It was found that the drug release depends on the interaction between the MOFs and the drugs while the controlled release rates can be attributed to the microencapsulated formulations. The in vitro antitumor activity was assessed using HSC-3 (human oral squamous carcinoma; head and neck) and U-87 MG (human glioblastoma grade IV; astrocytoma) cancer cells. Cytotoxicity studies for both cell lines showed that the polymer coated, drug loaded MOFs exhibited better anticancer activity compared to free paclitaxel and cisplatin solutions at different concentrations. (C) 2016 Elsevier B.V. All rights reserved.

Au@UiO-66: a base free oxidation catalyst

K. Leus, P. Concepcion, M. Vandichel, M. Meledina, A. Grirrane, D. Esquivel, S. Turner, D. Poelman, M. Waroquier, V. Van Speybroeck, G. Van Tendeloo, H. Garcia, P. Van der Voort
RSC Advances
5 (29), 22334–22342


We present the in situ synthesis of Au nanoparticles within the Zr based Metal Organic Framework, UiO-66. The resulting Au@UiO-66 materials were characterized by means of N2 sorption, XRPD, UV-Vis, XRF, XPS and TEM analysis. The Au nanoparticles (NP) are homogeneously distributed along the UiO-66 host matrix when using NaBH4 or H2 as reducing agents. The Au@UiO-66 materials were evaluated as catalysts in the oxidation of benzyl alcohol and benzyl amine employing O2 as oxidant. The Au@MOF materials exhibit a very high selectivity towards the ketone (up to 100 %). Regenerability and stability tests demonstrate that the Au@UiO-66 catalyst can be recycled with a negligible loss of Au species and no loss of crystallinity. In situ IR measurements of UiO-66 and Au@UiO-66-NaBH4, before and after treatment with alcohol, showed an increase in IR bands that can be assigned to a combination of physisorbed and chemisorbed alcohol species. This was confirmed by velocity power spectra obtained from the molecular dynamics simulations. Active peroxo and oxo species on Au could be visualized with Raman analysis.

Open Access version available at UGent repository
Subscribe to RSS - S. Turner