S. Cottenier

Assessment of a low-cost protocol for an ab initio based prediction of the mixing enthalpy at elevated temperatures: The Fe-Mo system

K. Lejaeghere, S. Cottenier, S. Claessens, M. Waroquier, V. Van Speybroeck
Physical Review B
83, 184201
2011
A1

Abstract 

We demonstrate how a limited number of ab initio calculations in combination with a simple Debye model can predict a concentration- and temperature-dependent mixing enthalpy for a binary system. Fe-Mo is taken as a test case, and our predictions are compared with phase diagram information and a recently measured heat of solution for Mo in Fe. Crystallographic and magnetic information is calculated for the λ and μ intermetallic phases in the Fe-Mo phase diagram as well. The present methodology can be useful for making a quick survey of mixing enthalpies in a large set of binary systems, in particular in the dilute concentration ranges where tabulated data are often lacking and where calphad-style modeling is less reliable.

Open Access version available at UGent repository

Hyperfine field and hyperfine anomalies of copper impurities in iron

V.V. Golovko, F. Wauters, S. Cottenier, M. Breitenfeldt, V. De Leebeeck, S. Roccia, G. Soti, M. Tandecki, E. Traykov, S. Van Gorp, D. Zakoucky, N. Severijns
Physical Review C
84, 014323
2011
A1

Abstract 

A new value for the hyperfine magnetic field of copper impurities in iron is obtained by combining resonance frequencies from experiments involving β-NMR on oriented nuclei on 59Cu, 69Cu, and 71Cu with magnetic moment values from collinear laser spectroscopy measurements on these isotopes. The resulting value, i.e., Bhf(CuFe) = -21.794(10) T, is in agreement with the value adopted until now but is an order of magnitude more precise. It is consistent with predictions from ab initio calculations. Comparing the hyperfine field values obtained for the individual isotopes, the hyperfine anomalies in Fe were determined to be 59Δ69=0.15(9)% and 71Δ69=0.07(11)%.

Electronic structure and band gap of zinc spinel oxides beyond LDA: ZnAl2O4, ZnGa2O4 and ZnIn2O4

H. Dixit, N. Tandon, R. Saniz, S. Cottenier, D. Lamoen, B. Partoens, V. Van Speybroeck, M. Waroquier
New Journal of Physics
13, 063002
2011
A1

Abstract 

We examine the electronic structure of the family of ternary zinc spinel oxides ZnX2O4 (X=Al, Ga and In). The band gap of ZnAl2O4 calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.8–3.9 eV. The DFT band gap of ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental value of 4.4–5.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl2O4 probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified Becke–Johnson (MBJ) potential approximation, to calculate the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl2O4, the predicted band gap values are >6 eV, i.e. ~2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.

Density functional theory study of La2Ce2O7: Disordered fluorite versus pyrochlore structure

D.E.P. Vanpoucke, P. Bultinck, S. Cottenier, V. Van Speybroeck, I. Van Driessche
Physical Review B
84, 054110
2011
A1

Abstract 

The crystal structure of lanthanum cerium oxide (La2Ce2O7) is investigated using ab initio density functional theory calculations. The relative stability of fluorite- and pyrochlorelike structures is studied through comparison of their formation energies. These formation energies show the pyrochlore structure to be favored over the fluorite structure, apparently contradicting the conclusions based on experimental neutron and x-ray diffraction (XRD). By calculating and comparing XRD spectra for a set of differently ordered and random structures, we show that the pyrochlore structure is consistent with diffraction experiments. For these reasons, we suggest the pyrochlore structure as the ground-state crystal structure for La2Ce2O7. © 2011 American Physical Society

Pages

Subscribe to RSS - S. Cottenier