M. Waroquier

Why does the uncoupled hindered rotor model work well for the thermodynamics of n-alkanes?

V. Van Speybroeck, P. Vansteenkiste, D. Van Neck, M. Waroquier
Chemical Physics Letters
402 (4-6), 479 - 484
2005
A1

Abstract 

In this Letter, we unravel the origin of the good-behavior of the one-dimensional hindered rotor model to describe the partition function and derived thermodynamic properties of n-alkanes. The simplified uncoupled model predicts entropies of n-alkanes up to decane with a standard deviation less than 1% (P. Vansteenkiste, V. Van Speybroeck, G.B. Marin, M. Waroquier, J. Phys. Chem. A 107 (2003) 3139). Application of a fully coupled scheme for the internal rotations present in pentane and hexane gives a justification of the success of the uncoupled hindered rotor model based on microscopic grounds. The success of the separable rotor model is due to fortuitous cancellation of errors and cannot be generalized.

Level of theory study of magnetic resonance parameters of chalcogen XY− (X, Y = O, S and Se) defects in alkali halides

F. Stevens, V. Van Speybroeck, E. Pauwels, H. Vrielinck, F. Callens, M. Waroquier
Physical Chemistry Chemical Physics (PCCP)
7 (2), 240-249
2005
A1

Abstract 

An extensive level of theory study is performed on diatomic chalcogen defects in alkali halide lattices by density functional theory methods. A variety of exchange correlation functionals and basis sets are used for the calculation of electron paramagnetic resonance (EPR) parameters of XY− (X, Y = O, S, Se) molecular ions doped in MZ (M = Na, K, Rb and Z = Cl, Br, I) lattices. Various factors contribute to the EPR values, such as geometrical effects, the choice of basis set and functional form. A sensitivity analysis is made by comparing experimental and theoretical magnetic resonance data. A flow scheme is proposed for obtaining the best agreement between experimental and calculated g-values for chalcogen defects in alkali halides.

Ab Initio Study of Free-Radical Polymerizations: Cost-Effective Methods to Determine the Reaction Rates

V. Van Speybroeck, K. Van Cauter, B. Coussens, M. Waroquier
ChemPhysChem
6 (1), 180-189
2005
A1

Abstract 

The addition of carbon-centered radicals to ethene, which are important in free-radical polymerization processes, are studied from a theoretical point of view. Experimental data for the rate constants are only available for the addition of methyl, ethyl, propyl and butyl radicals. The latter reactions are taken as model systems to derive a cost-effective method for the addition of alkyl radicals to ethene. The proposed model must be accurate and computationally feasible for additions in which larger radicals are involved. Accuracy is validated by direct comparison of theoretical and experimental rate constants in the temperature range from 300 to 600 K. A variety of electronic-structure methods were tested ranging from Hartree–Fock and post-Hartree–Fock methods to pure and hybrid density functional theory methods. Molecular partition functions were refined by treating large amplitude vibrations beyond the harmonic oscillator approximation.

Evaluation of Different Model Space Approaches Based on DFT to Examine the EPR Parameters of a Radiation-Induced Radical in Solid-State α-Glycine

E. Pauwels, V. Van Speybroeck, M. Waroquier
Journal of Physical Chemistry A
108 (51), 11321-11332
2004
A1

Abstract 

In this work, we present an extensive investigation of the radiation-induced +NH3−•CH−CO2- glycine radical, using ab initio density functional modeling. The geometry and electron paramagnetic resonance (EPR) characteristics of the radical have been calculated using several model space approaches, including a single molecule approach, cluster models, and periodic calculations. Consecutively, both the calculated structural and spectroscopic properties are compared with experimental values taken from the literature. This comparative study involves the reproduction of the hyperfine coupling constants and the principal directions of the hyperfine tensor. It is found that the accurate calculation of these two features represents a sensitive probe for the accuracy of the proposed methodology to describe the glycine radical. The best overall agreement with experimental EPR parameters is found for a cluster calculation, in which the molecular environment surrounding the radical was explicitly taken into account, not only for the geometry optimization but also for the calculation of the spectroscopic properties. In the case of the +NH3−•CH−CO2- glycine radical, apparently, the magnetic properties are indeed affected by the crystal environment.

Density functional theory investigation of S2− in KCl: evidence for the existence of a di-vacancy site

F. Stevens, H. Vrielinck, F. Callens, M. Waroquier
Solid State Communications
132 (11), 787-790
2004
A1

Abstract 

Electron paramagnetic resonance experiments have shown that, depending on the doping procedure, two different S2− centers may coexist in KCl. These centers have the 2B2g and the 2B3gground state, respectively. As no experimental ligand hyperfine data are available, it could not be determined whether the S2− molecular ion replaces a single halide ion (mono-vacancy site) or two nearest neighbor halide ions (di-vacancy site). Also, other defect models could a priory be considered. In this work, cluster in vacuo density functional theory calculations of the g and 33S hyperfine tensors show that the S2− ion at a mono-vacancy site has the 2B2g ground state, whereas S2− in a di-vacancy exhibits a 2B3g ground state. For the latter center, the possibility of charge compensation by a cation vacancy is also considered. The calculations indicate that a possible vacancy is not in the direct vicinity (nearest or next-nearest neighbor) of the S2− ion.

Density functional theory as a tool for the structure determination of radiation-induced bioradicals

F. De Proft, E. Pauwels, P. Lahorte, V. Van Speybroeck, M. Waroquier, P. Geerlings
Magnetic Resonance in Chemistry
42 (Sp. Iss. S1), S3-S19
2004
A1

Abstract 

The use of density functional methods for the elucidation of the structure of radiation-induced bio-radicals by comparison of computed and experimental EPR properties is discussed. Three case studies, radiation induced radicals of the amino acid alanine, steroid hormones and β-d-fructose, with increasing degree of uncertainty about the proposed radical structures, are investigated. Next to the analysis of the isotropic and anisotropic components of the hyperfine tensor, also the direction cosines of the principal axes of this tensor were investigated in greater detail in the case of the β-d-fructose radicals. Since all radicals considered in this contribution are formed in a solid matrix, also the question as to how to incorporate the effect of the molecular environment is addressed. It is concluded that the methodology outlined represents a powerful tool to aid experimentalists in the assignment of the contributions of various radicals contributing to the observed EPR spectra. Copyright © 2004 John Wiley & Sons, Ltd.

Open Access version available at UGent repository

Reactivity Indices for Radical Reactions Involving Polyaromatics

K. Hemelsoet, V. Van Speybroeck, G.B. Marin, F. De Proft, P. Geerlings, M. Waroquier
Journal of Physical Chemistry A
108 (35) , 7281-7290
2004
A1

Abstract 

The reactivity of polyaromatics involved in various radical reactions is studied. The reactions under study are hydrogen abstractions by a methyl radical and additions to double bonds both intra- and intermolecular. The chemical reactivity of the involved molecules is described through different properties, which are calculated within the density functional theory (DFT) framework. The softness reactivity index is tested on its usefulness and reliability to provide information about the reactivity of the global molecule or about chemical selectivity. The applicability of the hard and soft acids and bases (HSAB) principle for bimolecular radical reactions is illustrated by comparing the results of the softness-matching criterion with kinetic and thermodynamic data. For large polyaromatic molecules several magnetic indices, in particular, magnetic susceptibilities, chemical shifts, and nucleus independent chemical shifts (NICS), are computed to quantify the aromatic character of the involved species. The applicability of these magnetic indices in the case of radical reactions is validated by comparing with kinetic results obtained from transition state theory.

Efficient Use of Bifunctional Acid−Base Properties for Alkylammonium Formation in Amine-Substituted Zeolites

D. Lesthaeghe, V. Van Speybroeck, M. Waroquier
JACS (Journal of the American Chemical Society)
126 (30), 9162–9163
2004
A1

Abstract 

The formation of alkylammonium groups in amine-doped zeolites is studied using density functional theory on small clusters representing the chemically active site. The presence of both strong Lewis base and Brønsted acid sites leads to a significant lowering of reaction barriers as opposed to alkoxide formation in full-oxygen zeolites. Furthermore, amine-substituted zeolites suggest novel reaction pathways that are not solely centralized around the aluminum substitution but in which two tetrahedral sites are involved, maximizing use of the zeolitic acid site and its surroundings. An investigation of the proton mobility in these yet to be synthesized materials demonstrates the need for minimizing the amount of Al−NH−Si bridges, as to prevent protonation of the amine group.

DFT-EPR study of radiation-induced radicals in α-D-glucose

E. Pauwels, V. Van Speybroeck, F. Callens, M. Waroquier
International Journal of Quantum Chemistry
99 (2), 102-108
2004
A1

Abstract 

The structures of two radiation-induced radicals in solid-state α-d-glucose have been identified by means of single-molecule density function theory (DFT) calculations. Using the original crystalline structure as input, several radical models were created and their geometries optimized. Subsequently, electron paramagnetic resonance (EPR) parameters were calculated. During these calculations, the global orientation of the radical structure was kept fixed with respect to the crystal axes reference frame. This was essential to allow for an easy analysis of the hyperfine tensor principal directions, besides the isotropic and anisotropic coupling constants. By comparing these calculated EPR parameters with their experimentally determined counterparts, a plausible identification of two carbon-centered glucose radicals was possible. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004

Article Experimental and Theoretical Electron Magnetic Resonance Study on Radiation-Induced Radicals in α-l-Sorbose Single Crystals

G. Vanhaelewyn, B. Jansen, E. Pauwels, E. Sagstuen, M. Waroquier, F. Callens
Journal of Physical Chemistry A
108 (16), 3308-3314
2004
A1

Abstract 

α-l-Sorbose single crystals were X-irradiated at 295 K (room temperature). A combined electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR-induced EPR (EI-EPR) study at 120 K revealed a realm of radiation-induced free radicals in this sugar system. In the present work, a pair of closely related radicals is focused on, being dominant immediately after irradiation, but unstable with respect to long time storage or upon warming the samples. A density functional theory (DFT) study was carried out considering the complete hyperfine coupling tensors (principal axes and anisotropic and isotropic couplings) in comparison with the observed electron−proton interactions. This combined approach yielded very plausible models for both radicals, which are formed by a net hydrogen-abstraction from the C3 position of the six-membered sorbose ring. It appears that the difference between the two species is linked to the molecular disorder in the sorbose crystal structure. In addition, DFT calculations of the g tensors were performed for the plausible radical conformations.

Pages

Subscribe to RSS - M. Waroquier