K. S. Rawat

Engineering of Phenylpyridine- and Bipyridine-Based Covalent Organic Frameworks for Photocatalytic Tandem Aerobic Oxidation/Povarov Cyclization

M. Debruyne, S. Borgmans, S. Radhakrishnan, E. Breynaert, H. Vrielinck, K. Leus, A. Laemont, J. De Vos, K. S. Rawat, S. Vanlommel, H. Rijckaert, H. Salemi, J. Everaert, F. Vanden Bussche, D. Poelman, R. Morent, N. De Geyter, P. Van der Voort, V. Van Speybroeck, C.V. Stevens
ACS Applied Materials & Interfaces
15, 29, 35092–35106
2023
A1

Abstract 

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

Open Access version available at UGent repository

Phosphorous Covalent Triazine Framework based Nanomaterials for the Electrocatalytic Hydrogen Evolution Reaction

H. S. Jena, C. Krishnaraj, B. K. Satpathy, K. S. Rawat, K. Leus, S. Veerapandian, R. Morent, N. De Geyter, V. Van Speybroeck, D. Pradhan, P. Van der Voort
ACS Applied Nano Materials
2023
A1

Abstract 

The production of hydrogen via electrocatalytic reduction of water using metal-free nanomaterials as the catalyst is a promising and ultimate green approach. Graphitic carbon nitride, covalent organic frameworks, and covalent triazine frameworks (CTFs) are some of the nanostructured materials that are investigated for this purpose. Currently, these materials still lack the efficiency to compete with other techniques (electrolysis). This is because the reaction mechanism and active sites are, in many cases, still poorly understood. In this work, we report a set of metal-free nanostructure-based electrocatalysts, phosphorus covalent triazine frameworks (PCTFs), for electrocatalytic hydrogen production. The hydrogen evolution reaction (HER) performance of PCTF-based nanomaterials is ascribed to the synergistic effect of isolated single nitrogen and phosphorus sites on the large surface area. By combining both experimental and theoretical studies, we found that especially the pyridinic-nitrogen species are the most active sites for the HER. The presence of phosphorus next to the pyridinic-N enhances the HERs. The present results provide a better understanding of the importance of different heteroatoms in nanomaterials as active sites in HERs. Theoretical studies confirmed that phosphorus, being electron rich, creates high electron densities on the nearby N atoms of the CTF materials and intensifies the HER process.

Super-Oxidizing Covalent Triazine Framework Electrocatalyst for Two-Electron Water Oxidation to H2O2

R. Khan, J. Chakraborty, K. S. Rawat, R. Morent, N. De Geyter, V. Van Speybroeck, P. Van der Voort
Angewandte Chemie int. Ed.
Volume: 62, Issue: 47
2023
A1

Abstract 

Electrochemical two-electron water oxidation (2e WOR) is gaining surging research traction for sustainable hydrogen peroxide production. However, the strong oxidizing environment and thermodynamically competitive side-reaction (4e WOR) posit as thresholds for the 2e WOR. We herein report a custom-crafted covalent triazine network possessing strong oxidizing properties as a proof-of-concept metal-free functional organic network electrocatalyst for catalyzing 2e WOR. As the first-of-its-kind, the material shows a maximum of 89.9% Faradaic Efficiency and 1428 μmol/h/cm2 H2O2 production rate at 3.0 V bias potential (vs reversible hydrogen electrode, RHE), which are either better or comparable to the stateof-the-art electrocatalysts. We have experimentally confirmed a stepwise 2e WOR mechanism which was further computationally endorsed by density functional theory studies.

Exploring the Charge Storage Dynamics in Donor–Acceptor Covalent Organic Frameworks Based Supercapacitors by Employing Ionic Liquid Electrolyte

A. Chatterjee, J. Sun, K. S. Rawat, V. Van Speybroeck, P. Van der Voort
SMALL
Volume: 19, Issue: 46
2023
A1

Abstract 

Two donor–acceptor type tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) are investigated as electrodes for symmetric supercapacitors in different electrolytes, to understand the charge storage and dynamics in 2D COFs. Till-date, most COFs are investigated as Faradic redox pseudocapacitors in aqueous electrolytes. For the first time, it is tried to enhance the electrochemical performance and stability of pristine COF-based supercapacitors by operating them in the non-Faradaic electrochemically double layer capacitance region. It is found that the charge storage mechanism of ionic liquid (IL) electrolyte based supercapacitors is dependent on the micropore size and surface charge density of the donor–acceptor COFs. The surface charge density alters due to the different electron acceptor building blocks, which in turn influences the dense packing of the IL near its pore. The micropores induce pore confinement of IL in the COFs by partial breaking of coulomb ordering and rearranging it. The combination of these two factors enhance the charge storage in the highly microporous COFs. The density functional theory calculations support the same. At 1 A g−1, TTF-porphyrin COF provides capacitance of 42, 70, and 130 F g−1 in aqueous, organic, and IL electrolyte respectively. TTF-diamine COF shows a similar trend with 100 F g−1 capacitance in IL.

Pyrene-Based Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production

J. Sun, H. S. Jena, C. Krishnaraj, K. S. Rawat, S. Abednatanzi, J. Chakraborty, A. Laemont, W. Liu, H. Chen, Y.-Y. Liu, K. Leus, H. Vrielinck, V. Van Speybroeck, P. Van der Voort
Angewandte Chemie int. Ed.
Volume: 62; Issue: 19
2023
A1

Abstract 

Four highly porous covalent organic frameworks (COFs) containing pyrene units were prepared and explored for photocatalytic H2O2 production. The experimental studies are complemented by density functional theory calculations, proving that the pyrene unit is more active for H2O2 production than the bipyridine and (diarylamino)benzene units reported previously. H2O2 decomposition experiments verified that the distribution of pyrene units over a large surface area of COFs plays an important role in catalytic performance. The Py-Py-COF, though contains more pyrene units than other COFs, induces a high H2O2 decomposition due to a dense concentration of pyrene in small proximity over a limited surface area. Therefore, a two-phase reaction system (water-benzyl alcohol) was employed to inhibit H2O2 decomposition. This is the first report on applying pyrene-based COFs in a two-phase system for photocatalytic H2O2 generation.

Linker Engineering of 2D Imine Covalent Organic Frameworks for Heterogeneous Palladium-catalyzed Suzuki Coupling Reaction

C. Krishnaraj, H. S. Jena, K. S. Rawat, J. Schmidt, K. Leus, V. Van Speybroeck, P. Van der Voort
ACS Applied Materials & Interfaces
14, 45, 50923-50931
2022
A1

Abstract 

Covalent organic frameworks (COFs) are an emerging class of porous organic polymers that have been utilized as scaffolds for anchoring metal active species to act as heterogeneous catalysts. Though several examples of such COFs exist, a thorough experimental and computational analysis on such catalysts is limited. In this work, a series of two-dimensional (2D) imine COFs (TTA–DFB COF (N), TTA–TBD COF (N∧O), and TTA–DFP COF(N∧N)) were synthesized by using suitable building units to obtain three different coordination sites (N, N∧O, and N∧N). These were post-modified with Pd(II) to catalyze the Suzuki–Miyaura coupling reaction. Pd@TTA–DFB COF, where Pd(II) was coordinated to N sites, showed the fastest reactivity and lower stability. Pd@TTA–DFP COF showed highest stability but slowest reactivity. Pd@TTA–TBD COF was the best among the three with both high stability and fast reactivity. By combining both experimental and computational results, we conclude that the Pd(II) to Pd(0) reduction is a key step in the difference between the catalytic reactivities of the three COFs. This study demonstrates the importance of the building block approach to design COFs for efficient heterogeneous catalysis and to understand the fate of the reaction profile.

How the Layer Alignment in Two-dimensional Nanoporous Covalent Organic Frameworks Impacts Its Electronic Properties

K. S. Rawat, S. Borgmans, T. Braeckevelt, C.V. Stevens, P. Van der Voort, V. Van Speybroeck
ACS Applied Nano Materials
5, 10, 14377-14387
2022
A1

Abstract 

Two-dimensional nanoporous covalent organic frame-works (2D COFs) have gathered significant interest due to their wide range of applications. Due to the lack of strong covalent interlayer interactions, their layers can be stacked in countless ways, each resulting in unique nanoscale characteristics impacting the structural, chemical, and electronic properties. To characterize and understand the layer stacking in 2D COFs and its effect on the structural and electronic properties, we carried out a detailed density functional theory investigation on four materials, CTF-1, COF-1, COF-5, and Pc-PBBA. This entailed an in-depth evaluation of the potential energy as a function of the interlayer distance and offset, the powder X-ray diffraction (PXRD) pattern, and the electronic properties. From the potential energy surfaces, the typical slipped AA-stacking configuration was confirmed as optimal for each of the 2D COFs, with a slight offset from a perfect alignment of the layers. The statically calculated PXRD patterns based on these optimized stacking configurations showed discrepancies when compared to experimental data. Instead, when properly accounting for dynamic fluctuations by calculating the average diffraction pattern over the course of a molecular dynamics simulation, a better agreement with the experiment is obtained. Different stacking configurations also profoundly affected the electronic band structure of COFs as the interlayer pi-pi interactions are significantly impacted by the layer offset. Evidently, with decreasing layer offsets, the pi-pi interactions increase due to the layer alignment, leading to a decrease in the band gap and an increase in interlayer charge mobility. Our study highlights the need for accurate modeling of the stacking configuration in 2D COFs as a small-scale deviation in the adjacent layer position can significantly affect the structural and electronic properties.

Subscribe to RSS - K. S. Rawat