J. S. Martínez-Espín

Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process

I. Yarulina, K. De Wispelaere, S. Bailleul, J. Goetze, M. Radersma, E. Abou-Hamad, I. Vollmer, M. Goesten, B. Mezari, E.J.M. Hensen, J. S. Martínez-Espín, M. Morten, S. Mitchell, J. Perez-Ramirez, U. Olsbye, B.M. Weckhuysen, V. Van Speybroeck, F. Kapteijn, J. Gascon
Nature Chemistry
10 (8), 804-812


The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure–performance descriptors for processes that they catalyse has been a matter of intense debate, both in industry and academia, and the direct conversion of methanol to olefins is a prototypical system in which various catalytic functions contribute to the overall performance. Propylene selectivity and resistance to coking are the two most important parameters in developing new methanol-to-olefin catalysts. Here, we present a systematic investigation on the effect of acidity on the performance of the zeolite ‘ZSM-5’ for the production of propylene. Our results demonstrate that the isolation of Brønsted acid sites is key to the selective formation of propylene. Also, the introduction of Lewis acid sites prevents the formation of coke, hence drastically increasing catalyst lifetime.

Understanding zeolite-catalyzed benzene methylation reactions by methanol and dimethyl ether at operating conditions from first principle microkinetic modeling and experiments

K. De Wispelaere, J. S. Martínez-Espín, M. J. Hoffmann, S. Svelle, U. Olsbye, T. Bligaard
Catalysis Today
312, 35-43


In methanol-to-hydrocarbon chemistry, methanol and dimethyl ether (DME) can act as methylating agents. Therefore, we focus on the different reactivity of methanol and DME towards benzene methylation in H-ZSM-5 at operating conditions by combining first principles microkinetic modeling and experiments. Methylation reactions are known to follow either a concerted reaction path or a stepwise mechanism going through a framework-bound methoxide. By constructing a DFT based microkinetic model including the concerted and stepwise reactions, product formation rates can be calculated at conditions that closely mimic the experimentally applied conditions. Trends in measured rates are relatively well reproduced by our DFT based microkinetic model. We find that benzene methylation with DME is faster than with methanol but the difference decreases with increasing temperature. At low temperatures, the concerted mechanism dominates, however at higher temperatures and low pressures the mechanism shifts to the stepwise pathway. This transition occurs at lower temperatures for methanol than for DME, resulting in smaller reactivity differences between methanol and DME at high temperature. Our theory-experiment approach shows that the widely assumed rate law with zeroth and first order in oxygenate and hydrocarbon partial pressure is not generally applicable and depends on the applied temperature, pressure and feed composition.

Hydrogen transfer versus methylation: on the genesis of aromatics formation in the Methanol-To-Hydrocarbons over H-ZSM-5

J. S. Martínez-Espín, K. De Wispelaere, T. V. Janssens, S. Svelle, K. P. Lillerud, P. Beato, V. Van Speybroeck, U. Olsbye
ACS Catalysis
7, 5773–5780


The catalytic conversion of methanol (MeOH) and dimethyl ether (DME) into fuels and chemicals over zeolites (MTH process) is industrially emerging as an alternative route to conventional oil-derived processes. After 40 years of research, a detailed mechanistic understanding of the intricate reaction network is still not fully accomplished. The overall reaction is described as two competitive catalytic cycles, dominated by alkenes and arenes, which are methylated and cracked or dealkylated to form effluent products. Herein, we present the reaction of isobutene with methanol and DME as an efficient tool for measuring the relative formation rates of alkenes and arenes, and we provide detailed mechanistic insight into the hydrogen-transfer reaction. We provide experimental and theoretical evidence that manifest a strong competition of methylation and hydrogen transfer of isobutene by methanol, while methylation is substantially favored by DME. Experiments performed at higher conversion facilitate projection of the results to the product distribution obtained when using MeOH or DME as feedstock during the MTH reaction.

Benzene co-reaction with methanol and dimethyl ether over zeolite and zeotype catalysts: Evidence of parallel reaction paths to toluene and diphenylmethane

J. S. Martínez-Espín, K. De Wispelaere, M. Westgård Erichsen, S. Svelle, T. V. Janssens, V. Van Speybroeck, P. Beato, U. Olsbye
Journal of Catalysis
349, 136-148


The reactivity of methanol (MeOH) and dimethyl ether (DME) toward benzene was studied over zeolitic materials with different topology and acid strength (H-ZSM-5, H-SSZ-24, and H-SAPO-5) at 250–350 °C. Higher rates of methylation, and subsequent de-alkylation reactions, were observed with DME compared to MeOH. In addition, significant differences in product distribution based on the choice of methylating agent were observed. For reactions between MeOH and benzene a fraction of diphenylmethanes (DPMs) was formed, while this product group was nearly absent during reactions between DME and benzene. A range of co-feed and isotopic labeling experiments was performed, mainly over H-ZSM-5, in order to elucidate mechanistic information on the pathway from methanol and benzene to DPMs. Overall, these studies revealed that DPM formation involves the dehydrogenation of methanol to formaldehyde on the Brønsted acid site, followed by subsequent reaction with two benzene molecules. Theoretical calculations confirmed the higher reactivity of DME compared to MeOH toward benzene methylation and suggested a plausible route from formaldehyde and benzene to DPM.

Open Access version available at UGent repository
Green Open Access

The effects of methanol or dimethyl ether as methylating agent during zeolite catalysed benzene methylation


Conference / event / venue 

12th European Congress on Catalysis (Europacat XII)
Kazan, Russia
Sunday, 30 August, 2015 to Friday, 4 September, 2015
Subscribe to RSS - J. S. Martínez-Espín