D. Volkmer

Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal-Organic Framework (COMOC-3)

Y-Y Liu, K. Leus, M. Grzywa, D. Weinberger, K. Strubbe, H. Vrielinck, R. Van Deun, D. Volkmer, V. Van Speybroeck, P. Van der Voort
European Journal of Inorganic Chemistry
(16) 2819 - 2827
2012
A1

Abstract 

A vanadium 2,6-naphthalenedicarboxylate, VIII(OH)(O2C–C10H6–CO2)·H2O, denoted as COMOC-3as (COMOC = Center for Ordered Materials, Organometallics and Catalysis, Ghent University), has been synthesized under hydrothermal conditions by means of both a solvothermal and a microwave synthesis procedure. The structure shows the topology of an aluminium 2,6-naphthalenedicarboxylate, the so-called MIL-69 (MIL = Materials of the Institute Lavoisier). After calcination at 250 °C in air, the VIII center was oxidized to VIV with the structure of VIVO(O2C–C10H6–CO2) (COMOC-3). The oxidation process was verified by cyclic voltammetry and EPR spectroscopy. The crystallinity was investigated by variable-temperature XRD. The title compound is stable against air and moisture. The catalytic performance of COMOC-3 was examined in the liquid-phase oxidation of cyclohexene. COMOC-3 exhibited similar catalytic performance to MIL-47 [VO(O2C–C6H4–CO2)]. The compound is reusable and maintains its catalytic activity through several runs.

New V-IV-Based Metal-Organic Framework Having Framework Flexibility and High CO2 Adsorption Capacity

Y-Y Liu, S. Couck, M. Vandichel, M. Grzywa, K. Leus, S. Biswas, D. Volkmer, J. Gascon, F. Kapteijn, J.F.M. Denayer, M. Waroquier, V. Van Speybroeck, P. Van der Voort
Inorganic Chemistry
52 (1), 113-120
2013
A1

Abstract 

A vanadium based metal–organic framework (MOF), VO(BPDC) (BPDC2– = biphenyl-4,4′-dicarboxylate), adopting an expanded MIL-47 structure type, has been synthesized via solvothermal and microwave methods. Its structural and gas/vapor sorption properties have been studied. This compound displays a distinct breathing effect toward certain adsorptives at workable temperatures. The sorption isotherms of CO2 and CH4 indicate a different sorption behavior at specific temperatures. In situ synchrotron X-ray powder diffraction measurements and molecular simulations have been utilized to characterize the structural transition. The experimental measurements clearly suggest the existence of both narrow pore and large pore forms. A free energy profile along the pore angle was computationally determined for the empty host framework. Apart from a regular large pore and a regular narrow pore form, an overstretched narrow pore form has also been found. Additionally, a variety of spectroscopic techniques combined with N2 adsorption/desorption isotherms measured at 77 K demonstrate that the existence of the mixed oxidation states VIII/VIV in the titled MOF structure compared to pure VIV increases the difficulty in triggering the flexibility of the framework.

A new series of V IV based metal-organic frameworks having framework flexibility and high CO2 adsorption capacity

p.
ISBN/ISSN:
Poster

Conference / event / venue 

MOF2012
Edinburgh UK
Sunday, 16 September, 2012 to Wednesday, 19 September, 2012
Subscribe to RSS - D. Volkmer