B. Ensing

Acidity constant (pKa) calculation of large solvated dye molecules: evaluation of two advanced molecular dynamics methods

T. De Meyer, B. Ensing, S.M.J. Rogge, K. De Clerck, E.J. Meijer, V. Van Speybroeck
17 (21), 3447–3459


pH-sensitive dyes are increasingly applied onto polymer substrates for the creation of novel sensor materials. Recently, these dye molecules have been modified to form a covalent bond with the polymer host. This can have a large influence on the pH-sensitive properties, in particular on the acidity constant (pKa). Obtaining molecular control over the factors that influence the pK$_a$ value is mandatory for future intelligent design of sensor materials. Herein, we show that advanced molecular dynamics (MD) methods have reached the level where pKa values of large solvated dye molecules can be predicted with high accuracy. Two MD methods are used in this work: steered or restrained MD and the insertion/deletion scheme. Both are first calibrated on a set of phenol derivatives and afterwards applied to the dye molecule Bromothymol Blue. Excellent agreement with experimental values is obtained, which opens perspectives for using these methods for designing dye molecules.

Open Access version available at UGent repository

Insight into the Effect of Water on the Methanol-to-Olefins Conversion in H-SAPO-34 from Molecular Simulations and in Situ Microspectroscopy

K. De Wispelaere, C.S. Wondergem, B. Ensing, K. Hemelsoet, E.J. Meijer, B.M. Weckhuysen, V. Van Speybroeck, J. Ruiz-Martinez
ACS Catalysis
6, 1991-2002


The role of water in the methanol-to-olefins (MTO) process over H-SAPO-34 has been elucidated by a combined theoretical and experimental approach, encompassing advanced molecular dynamics simulations and in-situ micro-spectroscopy. First principle calculations at the molecular level point out that water competes with methanol and propene for direct access to the Brønsted acid sites. This results in less efficient activation of these molecules, which are crucial for the formation of the hydrocarbon pool. Furthermore, lower intrinsic methanol reactivity towards methoxide formation has been observed. These observations are in line with a longer induction period observed from in-situ UV-Vis micro-spectroscopy experiments. These experiments revealed a slower and more homogeneous discoloration of H-SAPO-34, while in-situ confocal fluorescence microscopy confirmed the more homogeneous distribution and larger amount of MTO intermediates when co-feeding water. As such it is show that water induces a more efficient use of the H-SAPO-34 catalyst crystals at the microscopic level. The combined experimental theoretical approach gives a profound insight into the role of water on the catalytic process at the molecular and single particle level.

Complex reaction environments and competing reaction mechanisms in zeolite catalysis: insights from advanced molecular dynamics

K. De Wispelaere, B. Ensing, A. Ghysels, E.J. Meijer, V. Van Speybroeck
Chemistry - A European Journal
21 (26), 9385-9396


The methanol to olefins process is a show case example of complex zeolite-catalyzed chemistry. At real operating conditions, many factors such as framework flexibility, adsorption of various guest molecules and competitive reaction pathways, affect reactivity. In this paper we show the strength of first principle molecular dynamics techniques to capture this complexity by means of two case studies. Firstly, the adsorption behavior of methanol and water in H-SAPO-34 at 350 °C is investigated. Hereby we observed an important degree of framework flexibility and proton mobility. Secondly, we studied the methylation of benzene by methanol via a competitive direct and stepwise pathway in the AFI topology. Both case studies clearly show that a first principle molecular dynamics approach enables to obtain unprecedented insights into zeolite-catalyzed reactions at the nanometer scale.

Open Access version available at UGent repository

Unraveling the reaction mechanism of methanol conversion: insights from molecular dynamics simulations


Conference / event / venue 

Study Group Meeting: Chemistry in Relation to Physics and Materials Sciences
Veldhoven, The Netherlands
Monday, 10 February, 2014 to Tuesday, 11 February, 2014
Subscribe to RSS - B. Ensing