Theoretical Study of the Thermodynamics and Kinetics of Hydrogen Abstractions from Hydrocarbons

A.G. Vandeputte, M. Sabbe, M-F. Reyniers, V. Van Speybroeck, M. Waroquier, G.B. Marin
Journal of Physical Chemistry A
111 (46), 11771–11786


Thermochemical and kinetic data were calculated at four cost-effective levels of theory for a set consisting of five hydrogen abstraction reactions between hydrocarbons for which experimental data are available. The selection of a reliable, yet cost-effective method to study this type of reactions for a broad range of applications was done on the basis of comparison with experimental data or with results obtained from computationally demanding high level of theory calculations. For this benchmark study two composite methods (CBS-QB3 and G3B3) and two density functional theory (DFT) methods, MPW1PW91/6-311G(2d,d,p) and BMK/6-311G(2d,d,p), were selected. All four methods succeeded well in describing the thermochemical properties of the five studied hydrogen abstraction reactions. High-level Weizmann-1 (W1) calculations indicated that CBS-QB3 succeeds in predicting the most accurate reaction barrier for the hydrogen abstraction of methane by methyl but tends to underestimate the reaction barriers for reactions where spin contamination is observed in the transition state. Experimental rate coefficients were most accurately predicted with CBS-QB3. Therefore, CBS-QB3 was selected to investigate the influence of both the 1D hindered internal rotor treatment about the forming bond (1D-HR) and tunneling on the rate coefficients for a set of 21 hydrogen abstraction reactions. Three zero curvature tunneling (ZCT) methods were evaluated (Wigner, Skodje & Truhlar, Eckart). As the computationally more demanding centrifugal dominant small curvature semiclassical (CD-SCS) tunneling method did not yield significantly better agreement with experiment compared to the ZCT methods, CD-SCS tunneling contributions were only assessed for the hydrogen abstractions by methyl from methane and ethane. The best agreement with experimental rate coefficients was found when Eckart tunneling and 1D-HR corrections were applied. A mean deviation of a factor 6 on the rate coefficients is found for the complete set of 21 reactions at temperatures ranging from 298 to 1000 K. Tunneling corrections play a critical role in obtaining accurate rate coefficients, especially at lower temperatures, whereas the hindered rotor treatment only improves the agreement with experiment in the high-temperature range.