Theoretical Insight into the Regioselective Ring-Expansions of Bicyclic Aziridinium Ions

E. Birsen Boydas, G. Tanriver, M. D'Hooghe, H-J. Ha, V. Van Speybroeck, S. Catak
Organic & Biomolecular Chemistry
16 (5), 796-806


Transient bicyclic aziridinium ions are known to undergo ring-expansion reactions, paving the way to functionalized nitrogen-containing heterocycles. In this study, the regioselectivity observed in the ring-expansion reactions of 1-azoniabicyclo[n.1.0]alkanes was investigated from a computational viewpoint to study the ring-expansion pathways of two bicyclic systems with different ring sizes. Moreover, several nucleophiles leading to different experimental results were investigated. The effect of solvation was taken into account using both explicit and implicit solvent models. This theoretical rationalization provides valuable insight into the observed regioselectivity and may be used as a predictive tool in future studies.