Mobile Block Hessian Approach with Adjoined Blocks: An Efficient Approach for the Calculation of Frequencies in Macromolecules

A. Ghysels, V. Van Speybroeck, E. Pauwels, D. Van Neck, B.R. Brooks, M. Waroquier
Journal of Chemical Theory and Computation (JCTC)
5 (5), 1203-1215


In an earlier work, the authors developed a new method, the mobile block Hessian (MBH) approach, to accurately calculate vibrational modes for partially optimized molecular structures [ J. Chem. Phys. 2007, 126 (22), 224102.]. It is based on the introduction of blocks, consisting of groups of atoms, that can move as rigid bodies. The internal geometry of the blocks need not correspond to an overall optimization state of the total molecular structure. The standard MBH approach considers free blocks with six degrees of freedom. In the extended MBH approach introduced herein, the blocks can be connected by one or two adjoining atoms, which further reduces the number of degrees of freedom. The new approach paves the way for the normal-mode analysis of biomolecules such as proteins. It rests on the hypothesis that low-frequency modes of proteins can be described as pure rigid-body motions of blocks of consecutive amino acid residues. The method is validated for a series of small molecules and further applied to alanine dipeptide as a prototype to describe vibrational interactions between two peptide units; to crambin, a small protein with 46 amino acid residues; and to ICE/caspase-1, which contains 518 amino acid residues.