Direct Computation of Parameters for Accurate Polarizable Force Fields

T. Verstraelen, S. Vandenbrande, P.W. Ayers
Journal of Chemical Physics
141, 194144


We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham DFT, approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.