The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene

K. Leus, M. Vandichel, Y-Y Liu, I. Muylaert, J. Musschoot, H. Vrielinck, F. Callens, G.B. Marin, C. Detavernier, Y.Z. Khimyak, M. Waroquier, V. Van Speybroeck, P. Van der Voort
Journal of Catalysis
285 (1) 196-207


A Metal Organic Framework, containing coordinatively saturated V+IV sites linked together by terephthalic linkers (V-MIL-47), is evaluated as a catalyst in the epoxidation of cyclohexene. Different solvents and conditions are tested and compared. If the oxidant TBHP is dissolved in water, a significant leaching of V-species into the solution is observed, and also radical pathways are prominently operative leading to the formation of an adduct between the peroxide and cyclohexene. If, however, the oxidant is dissolved in decane, leaching is negligible and the structural integrity of the V-MIL-47 is maintained during successive runs. The selectivity toward the epoxide is very high in these circumstances. Extensive computational modeling is performed to show that several reaction cycles are possible. EPR and NMR measurements confirm that at least two parallel catalytic cycles are co-existing: one with V+IV sites and one with pre-oxidized V+V sites, and this is in complete agreement with the theoretical predictions.

Open Access version available at UGent repository