On the convergence of atomic charges with the size of the enzymatic environment

D.E.P. Vanpoucke, J. Olah, F. De Proft, V. Van Speybroeck, G. Roos
Journal of Chemical Information and Modeling (JCIM)
Volume 55 Issue 3 page 564–571
2015
A1

Abstract 

Atomic charges are a key concept to give more insight into the electronic structure and chemical reactivity. The Hirshfeld-I partitioning scheme applied to the model protein human 2-cysteine peroxiredoxin thioredoxin peroxidase B is used to investigate how large a protein fragment needs to be in order to achieve convergence of the atomic charge of both, neutral and negatively charged residues. Convergence in atomic charges is rapidly reached for neutral residues, but not for negatively charged ones. This study pinpoints difficulties on the road towards accurate modeling of negatively charged residues of large biomolecular systems in a multiscale approach.