Abstract
A consistent set of group additive values ΔGAV° for 46 groups is derived, allowing the calculation of rate coefficients for hydrocarbon radical additions and β-scission reactions. A database of 51 rate coefficients based on CBS-QB3 calculations with corrections for hindered internal rotation was used as training set. The results of this computational method agree well with experimentally observed rate coefficients with a mean factor of deviation of 3, as benchmarked on a set of nine reactions. The temperature dependence on the resulting ΔGAV°s in the broad range of 300–1300 K is limited to ±4.5 kJ mol−1 on activation energies and to ±0.4 on logA (A: pre-exponential factor) for 90 % of the groups. Validation of the ΔGAV°s was performed for a test set of 13 reactions. In the absence of severe steric hindrance and resonance effects in the transition state, the rate coefficients predicted by group additivity are within a factor of 3 of the CBS-QB3 ab initio rate coefficients for more than 90 % of the reactions in the test set. It can thus be expected that in most cases the GA method performs even better than standard DFT calculations for which a deviation factor of 10 is generally considered to be acceptable.