Abstract
The relative importance of head-to-head versus head-to-tail addi-tions during the free-radical polymerization of vinyl chloride isdetermined by ab initio methods for different chain lengths ofthe polymer. First, a level of theory study is performed to deter-mine cost-effective methods for the ab initio description of thepropagation kinetics of vinyl chloride. The study includes the fol-lowing DFT-based methods: B3LYP, B3PW91, BHandH, BHandH-LYP, BLYP, BP86, MPW1K and MPW1PW91, in combination withdouble or triple zeta basis sets 6-31G(d) and 6-311GACHTUNGTRENNUNG(d,p). Also,the more recently developed BMK and MPW1K functionals are in-cluded. The influence of diffuse functions is tested by comparisonwith the basis sets 6-31+G(d) and 6-311++GACHTUNGTRENNUNG(3df,2p). The best-performing methods are B3LYP, B3PW91 and MPW1K combinedwith the 6-31+G(d) basis set. The converged probability of head-to-head propagation (2 per 1000 monomer units) is put into rela-tion with the experimental concentrations of defect structures. Acomparison is made with the head-to-head (HH) content of fluo-rine-substituted polymers and poly(vinyl acetate). The ab initiocalculations correctly predict the relative sequence of HH contentamong the various polymers.