V. Van Speybroeck

The Electrophilic Aromatic Bromination of Benzenes: Mechanistic and Regioselective Insights from Density Functional Theory

X. Deraet, E. Desmedt, R. Van Lommel, V. Van Speybroeck, F. De Proft
Physical Chemistry Chemical Physics (PCCP)
25, 28581 - 28594
2023
A1

Abstract 

The electrophilic aromatic substitution of benzenes is part of any undergraduate organic chemistry textbook, yet the mechanism, and more precisely the Wheland intermediate, remains a matter of debate. In this paper, we have computed different reaction paths for the bromination of benzene, anisole and nitrobenzene at the B97X-D/cc-pVTZ level of theory. This revealed, independently of the considered benzenes, a clear kinetic preference for an addition-elimination mechanism, rather than a substitution. Moreover, both mechanisms do not involve a charged Wheland-like intermediate, not in the gas phase nor in the investigated solvents (CCl4 and acetonitrile). Insight into the regioselectivity of the bromination was provided using a combination of conceptual DFT reactivity indices, aromaticity indices, Wiberg bond indices and the non-covalent interaction index. The ortho/para directing effect of the electron-donating methoxy-group in anisole was retrieved and ascribed to a synergy between strong electron delocalisation and attractive interactions. In contrast, the preferred meta-addition on nitrobenzene could not be traced back to any of these effects, nor to the intrinsic reactivity property of the reactant. In this case, an electrostatic clash between the ipso-carbon of the ring and the nitrogen atom resulting from the later nature of the rate-determining step, with respect to anisole, appeared to play a crucial role.

DFT-Quality Adsorption Simulations in Metal–Organic Frameworks Enabled by Machine Learning Potentials

R. Goeminne, L. Vanduyfhuys, V. Van Speybroeck, T. Verstraelen
Journal of Chemical Theory and Computation (JCTC)
19, 18, 6313-6325
2023
A1

Abstract 

Nanoporous materials such as metal–organic frameworks (MOFs) have been extensively studied for their potential for adsorption and separation applications. In this respect, grand canonical Monte Carlo (GCMC) simulations have become a well-established tool for computational screenings of the adsorption properties of large sets of MOFs. However, their reliance on empirical force field potentials has limited the accuracy with which this tool can be applied to MOFs with challenging chemical environments such as open-metal sites. On the other hand, density-functional theory (DFT) is too computationally demanding to be routinely employed in GCMC simulations due to the excessive number of required function evaluations. Therefore, we propose in this paper a protocol for training machine learning potentials (MLPs) on a limited set of DFT intermolecular interaction energies (and forces) of CO2 in ZIF-8 and the open-metal site containing Mg-MOF-74, and use the MLPs to derive adsorption isotherms from first principles. We make use of the equivariant NequIP model which has demonstrated excellent data efficiency, and as such an error on the interaction energies below 0.2 kJ mol–1 per adsorbate in ZIF-8 was attained. Its use in GCMC simulations results in highly accurate adsorption isotherms and heats of adsorption. For Mg-MOF-74, a large dependence of the obtained results on the used dispersion correction was observed, where PBE-MBD performs the best. Lastly, to test the transferability of the MLP trained on ZIF-8, it was applied to ZIF-3, ZIF-4, and ZIF-6, which resulted in large deviations in the predicted adsorption isotherms and heats of adsorption. Only when explicitly training on data for all ZIFs, accurate adsorption properties were obtained. As the proposed methodology is widely applicable to guest adsorption in nanoporous materials, it opens up the possibility for training general-purpose MLPs to perform highly accurate investigations of guest adsorption.

Operando modeling of zeolite catalyzed reactions using first principle molecular dynamics simulations

V. Van Speybroeck, M. Bocus, P. Cnudde, L. Vanduyfhuys
ACS Catalysis
13, 17, 11455-11493
2023
A1

Abstract 

Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps─diffusion, adsorption, and reaction─as they take place at the catalyst particle level.

Exploring the Charge Storage Dynamics in Donor–Acceptor Covalent Organic Frameworks Based Supercapacitors by Employing Ionic Liquid Electrolyte

A. Chatterjee, J. Sun, K. S. Rawat, V. Van Speybroeck, P. Van der Voort
SMALL
Volume: 19, Issue: 46
2023
A1

Abstract 

Two donor–acceptor type tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) are investigated as electrodes for symmetric supercapacitors in different electrolytes, to understand the charge storage and dynamics in 2D COFs. Till-date, most COFs are investigated as Faradic redox pseudocapacitors in aqueous electrolytes. For the first time, it is tried to enhance the electrochemical performance and stability of pristine COF-based supercapacitors by operating them in the non-Faradaic electrochemically double layer capacitance region. It is found that the charge storage mechanism of ionic liquid (IL) electrolyte based supercapacitors is dependent on the micropore size and surface charge density of the donor–acceptor COFs. The surface charge density alters due to the different electron acceptor building blocks, which in turn influences the dense packing of the IL near its pore. The micropores induce pore confinement of IL in the COFs by partial breaking of coulomb ordering and rearranging it. The combination of these two factors enhance the charge storage in the highly microporous COFs. The density functional theory calculations support the same. At 1 A g−1, TTF-porphyrin COF provides capacitance of 42, 70, and 130 F g−1 in aqueous, organic, and IL electrolyte respectively. TTF-diamine COF shows a similar trend with 100 F g−1 capacitance in IL.

Universal descriptors for zeolite topology and acidity to predict the stability of butene cracking intermediates

P. Cnudde, M. Waroquier, V. Van Speybroeck
Catalysis Science & Technology
13, 4857-4872
2023
A1

Abstract 

The influence of pore topology and acid strength on the adsorption of (iso)butene in Brønsted acid zeolites is investigated using a combination of static calculations and ab initio molecular dynamics simulations at operating conditions. The nature and lifetime of the adsorbed intermediates – a physisorbed alkene, a chemisorbed carbenium ion or an alkoxide – is assessed for a series of one-dimensional and three-dimensional zeolite topologies as well as metal substituted aluminophosphates with varying acid site strength. While alkoxides are elusive intermediates at high temperature, irrespective of the pore dimensions or acidity, the carbenium ion stabilization is highly correlated with the zeolite confinement and acid site strength. The impact of both topology and acidity can be nicely predicted by identifying universal descriptors such as the dispersion component of the isobutene adsorption energy (topology) and the ammonia adsorption energy (acidity). It is shown that the isobutene adsorption energies and protonation barriers follow clear linear correlations with these descriptors. Our findings yield essential insight into the reactivity differences for frameworks with a different topology and acidity. The activity of a zeolite for alkene conversion can for a large part be ascribed to variations in adsorption strength and its protonation ability.

The role of phonons in switchable MOFs: a model material perspective

A.E.J. Hoffman, I. Senkovska, L. Abylgazina, V. Bon, V. Grzimek, A.M. Dominic, M. Russina, M.A. Kraft, I. Weidinger, W.G. Zeier, V. Van Speybroeck, S. Kaskel
Journal of Materials Chemistry A
11, 28, 15286-15300
2023
A1

Abstract 

The large cell volume changes of switchable metal–organic frameworks (MOFs) render them as promising functional materials. Low-frequency phonon modes are known to influence the dynamic response of these materials. The pillared layer DUT-8(M) materials are prototypical examples of switchable MOFs, enabling switching between the closed and open pore phases, largely depending on the metal ions constituting the paddle wheel unit. However, the role of specific phonon modes in the softness of these materials is still rather unexplored. This study combines complementary spectroscopic techniques such as Raman spectroscopy, inelastic neutron scattering, and phonon acoustic spectroscopy (PAS) with density functional theory calculations (DFT) to unravel the vibrational properties of DUT-8(M) with different metal nodes (M = Ni, Co, Zn, Cu) to address these open questions. After analysis of the various experimental and theoretical spectroscopic data, the closed pore phase of DUT-8(Ni) appeared to be stiffer than that of the materials with Co and Zn. Experiments also show that the open pore phase of the Ni based compound is softer than those containing Zn and Co, although these findings could not be supported by theory. Nevertheless, DFT calculations could explain that changing the metal atom has mainly an impact on the phonon modes inducing changes in the paddle wheel unit. These results yield valuable insights into the role of the metal node on the observed flexibility in DUT-8(M) materials and can help to understand the mechanisms behind the phase transition in switchable MOFs.

Quantum tunneling rotor as a sensitive atomistic probe of guests in a metal-organic framework

K. Titov, M.R. Ryder, A. Lamaire, Z. Zeng, A.K. Chaudhari, J. Taylor, E.M. Mahdi, S.M.J. Rogge, S. Mukhopadhyay, S. Rudić, V. Van Speybroeck, F. Fernandez-Alonso, J.-C. Tan
Physical Review Materials
7, 073402
2023
A1

Abstract 

Quantum tunneling rotors in a zeolitic imidazolate framework ZIF-8 can provide insights into local gas adsorption sites and local dynamics of porous structure, which are inaccessible to standard physisorption or x-ray diffraction sensitive primarily to long-range order. Using in situ high-resolution inelastic neutron scattering at 3 K, we follow the evolution of methyl tunneling with respect to the number of dosed gas molecules. While nitrogen adsorption decreases the energy of the tunneling peak, and ultimately hinders it completely (0.33 meV to zero), argon substantially increases the energy to 0.42 meV. Ab initio calculations of the rotational barrier of ZIF-8 show an exception to the reported adsorption sites hierarchy, resulting in anomalous adsorption behavior and linker dynamics at subatmospheric pressure. The findings reveal quantum tunneling rotors in metal-organic frameworks as a sensitive atomistic probe of local physicochemical phenomena.

Gold Open Access

Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions

V. Van Speybroeck
Philosophical Transactions of the Royal Society A
381, 2250 & 20220239
2023
A1

Abstract 

The question is addressed in how far current modelling strategies are capable of modelling dynamic phenomena in realistic nanostructured materials at operating conditions. Nanostructured materials used in applications are far from perfect; they possess a broad range of heterogeneities in space and time extending over several orders of magnitude. Spatial heterogeneities from the subnanometre to the micrometre scale in crystal particles with a finite size and specific morphology, impact the material's dynamics. Furthermore, the material's functional behaviour is largely determined by the operating conditions. Currently, there exists a huge length–time scale gap between attainable theoretical length–time scales and experimentally relevant scales. Within this perspective, three key challenges are highlighted within the molecular modelling chain to bridge this length–time scale gap. Methods are needed that enable (i) building structural models for realistic crystal particles having mesoscale dimensions with isolated defects, correlated nanoregions, mesoporosity, internal and external surfaces; (ii) the evaluation of interatomic forces with quantum mechanical accuracy albeit at much lower computational cost than the currently used density functional theory methods and (iii) derivation of the kinetics of phenomena taking place in a multi-length–time scale window to obtain an overall view of the dynamics of the process.

This article is part of a discussion meeting issue ‘Supercomputing simulations of advanced materials’.

Understanding the phase transition mechanism in the lead halide perovskite CsPbBr₃ via theoretical and experimental GIWAXS and Raman spectroscopy

A.E.J. Hoffman, R.A. Saha, S. Borgmans, P. Puech, T. Braeckevelt, M.B.J. Roeffaers, J.A. Steele, J. Hofkens, V. Van Speybroeck
APL Materials
Volume 11, Issue 4, article number 041124
2023
A1

Abstract 

Metal-halide perovskites (MHPs) exhibit excellent properties for application in optoelectronic devices. The bottleneck for their incorporation is the lack of long-term stability such as degradation due to external conditions (heat, light, oxygen, moisture, and mechanical stress), but the occurrence of phase transitions also affects their performance. Structural phase transitions are often influenced by phonon modes. Hence, an insight into both the structure and lattice dynamics is vital to assess the potential of MHPs. In this study, GIWAXS and Raman spectroscopy are applied, supported by density functional theory calculations, to investigate the apparent manifestation of structural phase transitions in the MHP CsPbBr3. Macroscopically, CsPbBr3 undergoes phase transitions between a cubic (α), tetragonal (β), and orthorhombic (γ) phase with decreasing temperature. However, microscopically, it has been argued that only the γ phase exists, while the other phases exist as averages over length and time scales within distinct temperature ranges. Here, direct proof is provided for this conjecture by analyzing both theoretical diffraction patterns and the evolution of the tilting angle of the PbBr6 octahedra from molecular dynamics simulations. Moreover, sound agreement between experimental and theoretical Raman spectra allowed to identify the Raman active phonon modes and to investigate their frequency as a function of temperature. As such, this work increases the understanding of the structure and lattice dynamics of CsPbBr3 and similar MHPs.

Gold Open Access

ReDD-COFFEE: A ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings

J. De Vos, S. Borgmans, P. Van der Voort, S.M.J. Rogge, V. Van Speybroeck
J. Mater. Chem. A
11, 14, 7468-7487
2023
A1

Abstract 

Covalent organic frameworks (COFs) are a versatile class of building block materials with outstanding properties thanks to their strong covalent bonds and low density. Given the sheer number of hypothetical COFs envisioned via reticular synthesis, only a fraction of all COFs have been synthesized so far. Computational high-throughput screenings offer a valuable alternative to speed-up such materials discovery. Yet, such screenings vitally depend on the availability of diverse databases and accurate interatomic potentials to efficiently predict each hypothetical COF’s macroscopic behavior, which is currently lacking. Therefore, we herein present ReDD-COFFEE, the Ready-to-use and Diverse Database of Covalent Organic Frameworks with Force field based Energy Evaluation, containing 268 687 COFs and accompanying ab initio derived force fields that are shown to outperform generic ones. Our structure assembly approach results in a huge amount of computer-ready structures with a high diversity in terms of geometric properties, linker cores, and linkage types. Furthermore, the textural properties of the database are analyzed and the most promising COFs for vehicular methane storage are identified. By making the database freely accessible, we hope it may also inspire others to further explore the potential of these intriguing functional materials.

 

Gold Open Access

Pages

Subscribe to RSS - V. Van Speybroeck