S. Radhakrishnan

Computational Protocol for the Spectral Assignment of NMR Resonances in Covalent Organic Frameworks

S. Vanlommel, S. Borgmans, C. V. Chandran, S. Radhakrishnan, P. Van der Voort, E. Breynaert, V. Van Speybroeck
Journal of Chemical Theory and Computation (JCTC)
20, 9, 3823–3838
2024
A1

Abstract 

Solid-state nuclear magnetic resonance spectroscopy is routinely used in the field of covalent organic frameworks to elucidate or confirm the structure of the synthesized samples and to understand dynamic phenomena. Typically this involves the interpretation and simulation of the spectra through the assumption of symmetry elements of the building units, hinging on the correct assignment of each line shape. To avoid misinterpretation resulting from library-based assignment without a theoretical basis incorporating the impact of the framework, this work proposes a first-principles computational protocol for the assignment of experimental spectra, which exploits the symmetry of the underlying building blocks for computational feasibility. In this way, this protocol accommodates the validation of previous experimental assignments and can serve to complement new NMR measurements.

Development of porous organic polymers as metal free photocatalysts for the aromatization of N-heterocycles

M. Debruyne, N. Raeymackers, H. Vrielinck, S. Radhakrishnan, E. Breynaert, M. Delaey, A. Laemont, K. Leus, J. Everaert, H. Rijckaert, D. Poelman, R. Morent, N. De Geyter, P. Van der Voort, V. Van Speybroeck, C. Stevens, T.S.A Heugebaert
ChemCatChem
2024
A1

Abstract 

Porous organic polymers (POPs), and especially covalent triazine frameworks (CTFs), are being developed as the next generation of metal-free heterogeneous photocatalysts. However, many of the current synthetic routes to obtain these photoactive POPs require expensive monomers and rely on precious metal catalysts, thus hindering their widespread implementation. In this work, a range of POPs was synthesized from simple unfunctionalized aromatic building blocks, through Lewis acidcatalyzed polymerization. The obtained materials were applied, for the first time, as heterogeneous photocatalysts for the aromatization of N-heterocycles. With the use of the most active material, denoted as CTF-Pyr, which consists of photoactive pyrene and triazine moieties, a wide range of pyridines, dihydroquinoline-5-ones, tetrahydroacridine-1,8-diones and pyrazoles were obtained in excellent yields (70-99%). Moreover, these reactions were carried out under very mild conditions using air and at room temperature, highlighting the potential of these materials as catalysts for green transformations.

Engineering of Phenylpyridine- and Bipyridine-Based Covalent Organic Frameworks for Photocatalytic Tandem Aerobic Oxidation/Povarov Cyclization

M. Debruyne, S. Borgmans, S. Radhakrishnan, E. Breynaert, H. Vrielinck, K. Leus, A. Laemont, J. De Vos, K. S. Rawat, S. Vanlommel, H. Rijckaert, H. Salemi, J. Everaert, F. Vanden Bussche, D. Poelman, R. Morent, N. De Geyter, P. Van der Voort, V. Van Speybroeck, C.V. Stevens
ACS Applied Materials & Interfaces
15, 29, 35092–35106
2023
A1

Abstract 

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

Open Access version available at UGent repository

How water and ion mobility affect the NMR fingerprints of the hydrated JBW zeolite: a combined computational-experimental investigation

S. Vanlommel, A.E.J. Hoffman, S. Smet, S. Radhakrishnan, K. Asselman, C. V. Chandran, E. Breynaert, C. Kirschhock, J.A. Martens, V. Van Speybroeck
Chemistry - A European Journal
28, 68, e202202621
2022
A1

Abstract 

An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.

Gold Open Access

Super-ions of sodium cations with hydrated hydroxide anions: inorganic structure-directing agents in zeolite synthesis

K. Asselman, N. Pellens, S. Radhakrishnan, C. V. Chandran, J.A. Martens, F. Taulelle, T. Verstraelen, M. Hellstrom, E. Breynaert, C. Kirschhock
Materials Horizons
Volume 8, Issue 9, Pages 2576-2583
2021
A1

Abstract 

In inorganic zeolite formation, a direct correspondence between liquid state species in the synthesis and the supramolecular decoration of the pores in the as-made final zeolite has never been reported. In this paper, a direct link between the sodium speciation in the synthesis mixture and the pore structure and content of the final zeolite is demonstrated in the example of hydroxysodalite. Super-ions with 4 sodium cations bound by mono- and bihydrated hydroxide are identified as structure-directing agents for the formation of this zeolite. This documentation of inorganic solution species acting as a templating agent in zeolite formation opens new horizons for zeolite synthesis by design.

Subscribe to RSS - S. Radhakrishnan