S. Radhakrishnan

How water and ion mobility affect the NMR fingerprints of the hydrated JBW zeolite: a combined computational-experimental investigation

S. Vanlommel, A.E.J. Hoffman, S. Smet, S. Radhakrishnan, K. Asselman, C. V. Chandran, E. Breynaert, C. Kirschhock, J.A. Martens, V. Van Speybroeck
Chemistry - A European Journal
28, 68, e202202621
2022
A1

Abstract 

An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.

Gold Open Access

Super-ions of sodium cations with hydrated hydroxide anions: inorganic structure-directing agents in zeolite synthesis

K. Asselman, N. Pellens, S. Radhakrishnan, C. V. Chandran, J.A. Martens, F. Taulelle, T. Verstraelen, M. Hellstrom, E. Breynaert, C. Kirschhock
Materials Horizons
Volume 8, Issue 9, Pages 2576-2583
2021
A1

Abstract 

In inorganic zeolite formation, a direct correspondence between liquid state species in the synthesis and the supramolecular decoration of the pores in the as-made final zeolite has never been reported. In this paper, a direct link between the sodium speciation in the synthesis mixture and the pore structure and content of the final zeolite is demonstrated in the example of hydroxysodalite. Super-ions with 4 sodium cations bound by mono- and bihydrated hydroxide are identified as structure-directing agents for the formation of this zeolite. This documentation of inorganic solution species acting as a templating agent in zeolite formation opens new horizons for zeolite synthesis by design.

Subscribe to RSS - S. Radhakrishnan