S. Borgmans

Quantifying the likelihood of structural models through a dynamically enhanced powder X‐ray diffraction protocol

S. Borgmans, S.M.J. Rogge, J. De Vos, C.V. Stevens, P. Van der Voort, V. Van Speybroeck
Angewandte Chemie int. Ed.
60 (16), 8913-8922
2021
A1

Abstract 

Structurally characterizing new materials is tremendously challenging, especially when single crystal structures are hardly available which is often the case for covalent organic frameworks. Yet, knowledge of the atomic structure is key to establish structure‐function relations and enable functional material design. Herein a new protocol is proposed to unambiguously predict the structure of poorly crystalline materials through a likelihood ordering based on the X‐ray diffraction (XRD) pattern. Key of the procedure is the broad set of structures generated from a limited number of building blocks and topologies, which is submitted to operando structural characterization. The dynamic averaging in the latter accounts for the operando conditions and inherent temporal character of experimental measurements, yielding unparalleled agreement with experimental powder XRD patterns. The proposed concept can hence unquestionably identify the structure of experimentally synthesized materials, a crucial step to design next generation functional materials.

Gold Open Access

Strongly Reducing (Diarylamino)benzene Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H2O2 Generation

C. Krishnaraj, H. S. Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S.M.J. Rogge, K. Leus, C.V. Stevens, J.A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas, P. Van der Voort
JACS (Journal of the American Chemical Society)
142 (47), 20107-20116
2020
A1

Abstract 

Photocatalytic reduction of molecular oxygen is a promising route toward sustainable production of hydrogen peroxide (H2O2). This challenging process requires photoactive semiconductors enabling solar energy driven generation and separation of electrons and holes with high charge transfer kinetics. Covalent organic frameworks (COFs) are an emerging class of photoactive semiconductors, tunable at a molecular level for high charge carrier generation and transfer. Herein, we report two newly designed two-dimensional COFs based on a (diarylamino)benzene linker that forms a Kagome (kgm) lattice and shows strong visible light absorption. Their high crystallinity and large surface areas (up to 1165 m2·g−1) allow efficient charge transfer and diffusion. The diarylamine (donor) unit promotes strong reduction properties, enabling these COFs to efficiently reduce oxygen to form H2O2. Overall, the use of a metal-free, recyclable photocatalytic system allows efficient photocatalytic solar transformations.

Gold Open Access

Accurately determining the transition temperature of metal halide perovskites via RPA calculations and phase-transferable machine learning potentials

ISBN/ISSN:
Talk

Conference / event / venue 

DFT2022
Brussels, Belgium
Monday, 29 August, 2022 to Friday, 2 September, 2022

Pages

Subscribe to RSS - S. Borgmans