R. Ameloot

Active Role of Methanol in Post-Synthetic Linker Exchange in the Metal-Organic Framework UiO-66

J. Marreiros, C. Caratelli, J. Hajek, A. Krajnc, G. Fleury, B. Bueken, D. De Vos, G. Mali, M. Roeffaers, V. Van Speybroeck, R. Ameloot
Chemistry of Materials
31 (4), 1359-1369
2019
A1

Abstract 

UiO-66 is known as one of the most robust metal-organic framework materials. Nevertheless, UiO-66 has also been shown to undergo post-synthetic exchange of structural linkers with surprising ease in some sol-vents. To date the exchange mechanism has not yet been fully elucidated. Here, we show how time-resolved monitoring grants insight into the selected case of exchanging 2-aminoterephthalic acid into UiO-66 in methanol. Analysis of both the solid and liquid phase, complemented by computational insights, revealed the active role of methanol in the creation and stabilization of metastable states in which dangling linkers are similar to monocarboxylate defects that can be introduced during UiO-66 synthesis, such dangling link-ers undergo fast exchange. The presence of missing linker or missing cluster defects at the start of the ex-change process was shown to have no considerable impact on the equilibrium composition. After the ex-change process, the incoming 2-aminoterephthalate and remaining terephthalate linkers were distributed homogeneously in the framework for the typical small crystal size of UiO-66 (≈500nm).

Open Access version available at UGent repository
Green Open Access

Towards metal–organic framework based field effect chemical sensors: UiO-66-NH2 for nerve agent detection

L. Stassen, B. Bueken, H. Reinsch, J.F.M. Oudenhoven, D. Wouters, J. Hajek, V. Van Speybroeck, N. Stock, P.M. Vereecken, R. Van Schajik, D. De Vos, R. Ameloot
Chemical Science
7, 5827-5832
2016
A1

Abstract 

We present a highly sensitive gas detection approach for the infamous ‘nerve agent’ group of alkyl phosphonate compounds. Signal transduction is achieved by monitoring the work function shift of metal–organic framework UiO-66-NH2 coated electrodes upon exposure to ppb-level concentrations of a target simulant. Using the Kelvin probe technique, we demonstrate the potential of electrically insulating MOFs for integration in field effect devices such as ChemFETs: a three orders of magnitude improvement over previous work function-based detection of nerve agent simulants. Moreover, the signal is fully reversible both in dry and humid conditions, down to low ppb concentrations. Comprehensive investigation of the interactions that lead towards this high sensitivity points towards a series of confined interactions between the analyte and the pore interior of UiO-66-NH2.

Open Access version available at UGent repository

A Flexible Photoactive Titanium Metal-Organic Framework Based on a [Ti-3(IV)(mu(3)-O)(O)(2)(COO)(6)] Cluster

B. Bueken, F. Vermoortele, D.E.P. Vanpoucke, H. Reinsch, C. Tsou, P. Valvekens, T. De Baerdemaeker, R. Ameloot, C. Kirschhock, V. Van Speybroeck, J. Mayer, D. De Vos
Angewandte Chemie int. Ed.
127, 14118 –14123
2015
A1

Abstract 

The synthesis of titanium-carboxylate metal-organic frameworks (MOFs) is hampered by the high reactivity of the commonly employed alkoxide precursors. Herein, we present an innovative approach to titanium-based MOFs by the use of titanocene dichloride to synthesize COK-69, the first breathing Ti MOF, which is built up from trans-1,4-cyclo-hexanedicarboxylate linkers and an unprecedented [Ti-3(IV)(mu(3)-O)(O)(2)(COO)(6)] cluster. The photoactive properties of COK-69 were investigated in depth by proton-coupled electron-transfer experiments, which revealed that up to one Ti-IV center per cluster can be photoreduced to Ti-III while preserving the structural integrity of the framework. The electronic structure of COK-69 was determined by molecular modeling, and a band gap of 3.77 eV was found.

Electronic effects of linker substitution on Lewis acid catalysis with Metal-organic frameworks

F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier, V. Van Speybroeck, D. De Vos
Angewandte Chemie int. Ed.
51(20), 4887-4890
2012
A1

Abstract 

Functionalized linkers can greatly increase the activity of metal–organic framework (MOF) catalysts with coordinatively unsaturated sites. A clear linear free-energy relationship (LFER) was found between Hammett σm values of the linker substituents X and the rate kX of a carbonyl-ene reaction. This is the first LFER ever observed for MOF catalysts. A 56-fold increase in rate was found when the substituent is a nitro group.

Subscribe to RSS - R. Ameloot