P.W. Ayers

When is the Fukui Function Not Normalized? The Danger of Inconsistent Energy Interpolation Models in Density Functional Theory

F. Heidar-Zadeh, R.A. Miranda-Quintana, T. Verstraelen, P. Bultinck, P.W. Ayers, A. Buekenhoudt
Journal of Chemical Theory and Computation (JCTC)
12 (12), 5777–5787
2016
A1

Abstract 

When one defines the energy of a molecule with a noninteger number of electrons by interpolation of the energy values for integer-charged states, the interpolated electron density, Fukui function, and higher-order derivatives of the density are generally not normalized correctly. The necessary and sufficient condition for consistent energy interpolation models is that the corresponding interpolated electron density is correctly normalized to the number of electrons. A necessary, but not sufficient, condition for correct normalization is that the energy interpolant be a linear function of the reference energies. Consistent with this general rule, polynomial interpolation models and, in particular, the quadratic E vs N model popularized by Parr and Pearson, do give normalized densities and density derivatives. Interestingly, an interpolation model based on the square root of the electron number also satisfies the normalization constraints. We also derive consistent least-norm interpolation models. In contrast to these models, the popular rational and exponential forms for E vs N do not give normalized electron densities and density derivatives.

Minimal Basis Iterative Stockholder: Atoms-in-Molecules for Force-Field Development

T. Verstraelen, S. Vandenbrande, F. Heidar-Zadeh, L. Vanduyfhuys, V. Van Speybroeck, M. Waroquier, P.W. Ayers
Journal of Chemical Theory and Computation (JCTC)
12(8), 3894-3912
2016
A1

Abstract 

Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in-molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. This approximate "pro-density" is expanded in a minimal basis of atom-centered s-type Slater density functions, whose parameters are optimized by minimizing the Kullback-Leibler divergence of the pro-density from a reference electron density, e.g. obtained from an electronic structure calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS), is a variant of the Hirshfeld AIM method but it can also be used as a density-fitting technique. An iterative algorithm to refine the pro-density is easily implemented with a linear-scaling computational cost, enabling applications to supramolecular systems. The benefits of the MBIS method are demonstrated with systematic applications to molecular databases and extended models of condensed phases. A comparison to 14 other AIM methods shows its effectiveness when modeling electrostatic interactions. MBIS is also suitable for rescaling atomic polarizabilities in the Tkatchenko-Sheffler scheme for dispersion interactions.

CheMPS2: Improved DMRG-SCF routine and correlation functions

S. Wouters, W. Poelmans, S. De Baerdemacker, P.W. Ayers, D. Van Neck
Computer Physics Communications
191, 235-237
2015
A1

Abstract 

CheMPS2, our spin-adapted implementation of the density matrix renormalization group (DMRG) for ab initio quantum chemistry (Wouters et al., 2014), has several new features. A speed-up of the augmented Hessian Newton–Raphson DMRG self-consistent field (DMRG-SCF) routine is achieved with the direct inversion of the iterative subspace (DIIS). For extended molecules, the active space orbitals can be localized by maximizing the Edmiston–Ruedenberg cost function. These localized orbitals can be ordered according to the topology of the molecule by approximately minimizing the bandwidth of the exchange matrix with the Fiedler vector. The electronic structure can be analyzed by means of the two-orbital mutual information, spin, spin-flip, density, and singlet diradical correlation functions.

Non-Variational Orbital Optimization Techniques for the AP1roG Wave Function

K. Boguslawski, P. Tecmer, P.W. Ayers, P. Bultinck, S. De Baerdemacker, D. Van Neck
Journal of Chemical Theory and Computation (JCTC)
10 (11), 4873-4882
2014
A1

Abstract 

We introduce new nonvariational orbital optimization schemes for the antisymmetric product of one-reference orbital geminal (AP1roG) wave function (also known as pair-coupled cluster doubles) that are extensions to our recently proposed projected seniority-two (PS2-AP1roG) orbital optimization method [ J. Chem. Phys. 2014, 140, 214114)]. These approaches represent less stringent approximations to the PS2-AP1roG ansatz and prove to be more robust approximations to the variational orbital optimization scheme than PS2-AP1roG. The performance of the proposed orbital optimization techniques is illustrated for a number of well-known multireference problems: the insertion of Be into H2, the automerization process of cyclobutadiene, the stability of the monocyclic form of pyridyne, and the aromatic stability of benzene.

Efficient description of strongly correlated electrons with mean-field cost

K. Boguslawski, P. Tecmer, P.W. Ayers, P. Bultinck, S. De Baerdemacker, D. Van Neck
Physical Review B
89 (20), 201106
2014
A1

Abstract 

We present an efficient approach to the electron correlation problem that is well suited for strongly interacting many-body systems, but requires only mean-field-like computational cost. The performance of our approach is illustrated for one-dimensional Hubbard rings with different numbers of sites, and for the nonrelativistic quantum-chemical Hamiltonian exploring the symmetric dissociation of the H-50 hydrogen chain.

Open Access version available at UGent repository

The Influence of Ser-154, Cys-113, and the Phosphorylated Threonine Residue on the Catalytic Reaction Mechanism of Pin1

E. Vohringer-Martinez, T. Verstraelen, P.W. Ayers
Journal of Physical Chemistry B
118 (33), 9871-9880
2014
A1

Abstract 

Pin1 is an enzyme that specifically catalyzes the cis–trans isomerization of proline amide bonds in peptides that contain a phosphorylated threonine or serine residue in the position preceding proline. In the cell, the isomerization reaction is associated with cellular signaling and has been related to diseases such as Alzheimer and cancer. The catalytic mechanism by which Pin1 accelerates the isomerization reaction, however, is still unknown. In this study, we use molecular dynamics simulation in combination with the QM/MM methodology to disclose the influence of the residues Ser-154 and Cys-113 in the enzyme and the phosphorylated threonine residue in the peptide on the reaction mechanism. To account for the correct electrostatic interaction between the three residues and the reactive center, we derive atomic charges that account for the varying electrostatic field in the catalytic cavity. Different methods based on reproducing the molecular electrostatic potential or an atoms in molecules approach were investigated. Finally, the reaction mechanism is analyzed with the mean reaction force and the influence of the three residues is disclosed. Our results show that Pin1 specifically catalyzes the isomerization of the trans conformer in a jump-rope type of motion, as suggested by us and confirmed experimentally by others. This is accomplished by anchoring the threonine phosphate residue on one end of the peptide through electrostatic interactions with the basic triad of the enzyme and at the other end through specific enzyme–peptide hydrogen bonds. Cys-113 reduces the structural contribution to the activation free energy through the stabilization of the cis conformer, and Ser-154 in combination with Gln-131 assist in the isomerization reaction of the trans isomer.

Direct Computation of Parameters for Accurate Polarizable Force Fields

T. Verstraelen, S. Vandenbrande, P.W. Ayers
Journal of Chemical Physics
141, 194144
2014
A1

Abstract 

We present an improved electronic linear response model to incorporate polarization and charge-transfer effects in polarizable force fields. This model is a generalization of the Atom-Condensed Kohn-Sham DFT, approximated to second order (ACKS2): it can now be defined with any underlying variational theory (next to KS-DFT) and it can include atomic multipoles and off-center basis functions. Parameters in this model are computed efficiently as expectation values of an electronic wavefunction, obviating the need for their calibration, regularization and manual tuning. In the limit of a complete density and potential basis set in the ACKS2 model, the linear response properties of the underlying theory for a given molecular geometry are reproduced exactly. A numerical validation with a test set of 110 molecules shows that very accurate models can already be obtained with fluctuating charges and dipoles. These features greatly facilitate the development of polarizable force fields.

Projected seniority-two orbital optimization of the antisymmetric product of one-reference orbital geminal

K. Boguslawski, P. Tecmer, P.A. Limacher, P.A. Johnson, P.W. Ayers, P. Bultinck, S. De Baerdemacker, D. Van Neck
Journal of Chemical Physics
140 (21), 214114
2014
A1

Abstract 

We present a new, non-variational orbital-optimization scheme for the antisymmetric product of one-reference orbital geminal wave function. Our approach is motivated by the observation that an orbital-optimized seniority-zero configuration interaction (CI) expansion yields similar results to an orbital-optimized seniority-zero-plus-two CI expansion [L. Bytautas, T. M. Henderson, C. A. Jimenez-Hoyos, J. K. Ellis, and G. E. Scuseria, J. Chem. Phys. 135, 044119 (2011)]. A numerical analysis is performed for the C-2 and LiF molecules, for the CH2 singlet diradical as well as for the symmetric stretching of hypothetical (linear) hydrogen chains. For these test cases, the proposed orbital-optimization protocol yields similar results to its variational orbital optimization counterpart, but prevents symmetry-breaking of molecular orbitals in most cases. (C) 2014 AIP Publishing LLC.

The influence of orbital rotation on the energy of closed-shell wavefunctions

P.A. Limacher, T.D. Kim, P.W. Ayers, P.A. Johnson, S. De Baerdemacker, D. Van Neck, P. Bultinck
Molecular Physics
112 (5-6), 853-862
2014
A1

Abstract 

The orbital dependence of closed-shell wavefunction energies is investigated by performing doubly-occupied configuration interaction (DOCI) calculations, representing the most general class of these wavefunctions. Different local minima are examined for planar hydrogen clusters containing two, four, and six electrons applying (spin) symmetry-broken restricted, unrestricted, and generalised orbitals with real and complex coefficients. Contrary to Hartree-Fock (HF), restricted DOCI is found to properly break bonds and thus unrestricted orbitals, while providing a quantitative improvement of the energy, are not needed to enforce a qualitatively correct bond dissociation. For the beryllium atom and the BH diatomic, the lowest possible HF energy requests symmetry-broken generalised orbitals, whereas accurate results for DOCI can be obtained within a restricted formalism. Complex orbital coefficients are shown to increase the accuracy of HF and DOCI results in certain cases. The computationally inexpensive AP1roG geminal wavefunction is proven to agree very well with all DOCI results of this study.

Open Access version available at UGent repository

Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals

P.A. Limacher, P.W. Ayers, P.A. Johnson, S. De Baerdemacker, D. Van Neck, P. Bultinck
Physical Chemistry Chemical Physics (PCCP)
16 (11), 5061-5065
2014
A1

Abstract 

A new multireference perturbation approach has been developed for the recently proposed AP1roG scheme, a computationally facile parametrization of an antisymmetric product of nonorthogonal geminals. This perturbation theory of second-order closely follows the biorthogonal treatment from multiconfiguration perturbation theory as introduced by Surjan et al., but makes use of the additional feature of AP1roG that the expansion coefficients within the space of closed-shell determinants are essentially correct already, which further increases the predictive power of the method. Building upon the ability of AP1roG to model static correlation, the perturbation correction accounts for dynamical electron correlation, leading to absolute energies close to full configuration interaction results. Potential surfaces for multiple bond dissociation in H2O and N-2 are predicted with high accuracy up to bond breaking. The computational cost of the method is the same as that of conventional single-reference MP2.

Open Access version available at UGent repository

Pages

Subscribe to RSS - P.W. Ayers