M. Waroquier

On the thermodynamics of framework breathing: A free energy model for gas adsorption in MIL-53

A. Ghysels, L. Vanduyfhuys, M. Vandichel, M. Waroquier, V. Van Speybroeck, B. Smit
Journal of Physical Chemistry C
117, 11540-11554
2013
A1

Abstract 

When adsorbing guest molecules, the porous metal-organic framework MIL-53(Cr) may vary its cell parameters drastically while retaining its crystallinity. A first approach to the thermodynamic analysis of this 'framework breathing' consists of comparing the osmotic potential in two distinct shapes only (large-pore and narrow-pore). In this paper, we propose a generic parametrized free energy model including three contributions: host free energy, guest-guest interactions, and host-guest interaction. Free energy landscapes may now be constructed scanning all shapes and any adsorbed amount of guest molecules. This allows to determine which shapes are the most stable states for arbitrary combinations of experimental control parameters, such as the adsorbing gas chemical potential, the external pressure, and the temperature. The new model correctly reproduces the structural transitions along the CO2 and CH4 isotherms. Moreover, our model successfully explains the adsorption versus desorption hysteresis as a consequence of the creation, stabilization, destabilization, and disappearance of a second free energy minimum under the assumptions of a first order phase transition and collective behavior. Our general thermodynamic description allows to decouple the gas chemical potential μ and mechanical pressure P as two independent thermodynamic variables and predict the complete (μ,P) phase diagram for CO2 adsorption in MIL-53(Cr). The free energy model proposed here is an important step towards a general thermodynamics description of flexible metal-organic frameworks.

Diphosphonylation of Aromatic Diazaheterocycles and Theoretical Rationalization of Product Yields

A. De Blieck, S. Catak, W. Debrouwer, J. Drabowicz, K. Hemelsoet, T. Verstraelen, M. Waroquier, V. Van Speybroeck, C. Stevens
European Journal of Organic Chemistry
2013 (6), 1058-1067
2013
A1

Abstract 

Diphosphonylated diazaheterocyclic compounds were synthesized in a one-step reaction by using dimethyl trimethylsilyl phosphite (DMPTMS) under acidic conditions. The reaction of DMPTMS with 1,5-naphthyridine yielded the corresponding diphosphonylated product through a tandem 1,4–1,2 addition under microwave conditions. This tandem 1,4–1,2 addition was also evaluated for other substrates, namely, 1,10-phenanthroline, 1,7-phenanthroline and 4,7-phenanthroline. Reactions under reflux and microwave conditions were compared. 1,5-Naphthyridine and the phenanthroline derived substrates are less reactive than previously investigated quinolines. The experimental trends in reactivity were rationalized by means of theoretical calculations. The intrinsic properties, such as aromaticity and proton affinities, showed distinct differences for the various substrates. Furthermore, the calculated free energies of activation for the rate-determining step of the tandem addition reaction enabled us to rationalize the differences in product yields. Both the theoretical and the experimental results show the substantial influence of the position of the nitrogen atoms in the (poly)aromatic compounds on the reaction outcome.

ACKS2: Atom-Condensed Kohn-Sham DFT approximated to second order

T. Verstraelen, P.W. Ayers, V. Van Speybroeck, M. Waroquier
Journal of Chemical Physics
138 (7), 07408
2013
A1

Abstract 

A new polarizable force field (PFF), namely atom-condensed Kohn-Sham density functional theory approximated to second order (ACKS2), is proposed for the efficient computation of atomic charges and linear response properties of extended molecular systems. It is derived from Kohn-Sham density functional theory (KS-DFT), making use of two novel ingredients in the context of PFFs: (i) constrained atomic populations and (ii) the Legendre transform of the Kohn-Sham kinetic energy. ACKS2 is essentially an extension of the Electronegativity Equalization Method (EEM) [W. J. Mortier, S. K. Ghosh, and S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986)]10.1021/ja00275a013 in which two major EEM shortcomings are fixed: ACKS2 predicts a linear size-dependence of the dipole polarizability in the macroscopic limit and correctly describes the charge distribution when a molecule dissociates. All ACKS2 parameters are defined as atoms-in-molecules expectation values. The implementation of ACKS2 is very similar to that of EEM, with only a small increase in computational cost.

Open Access version available at UGent repository

Origins of the Solvent Effect on the Propagation Kinetics of Acrylic Acid and Methacrylic Acid

I. Değirmenci, T. Furuncuoğlu, O. Karahan, V. Van Speybroeck, M. Waroquier, V. Aviyente
Journal of Polymer Science Part A: Polymer Chemistry
51 (9), 2024–2034
2013
A1

Abstract 

In this study, the relative rate of polymerization of acrylic acid (AA) versus methacrylic acid (MAA) and the effect of water on the polymerization kinetics are investigated within a combined static and molecular dynamics set of computational tools. Experimentally the relative rate of propagation of AA versus MAA is around 35 in bulk and 31 in water. Classical Molecular Dynamics calculations have been carried out to determine the location of the solvent molecules in the proximity of the dimeric poly(AA) and poly(MAA) units. A combined implicit/explicit solvent model was used for the evaluation of the kinetics of the dimeric polymer chains. We show that the rate acceleration of both polymers in water is mainly due to entropic rather than electrostatic effects and is in agreement with experimental findings. Moreover the slower propagation rate of MAA versus AA is ascribed to additional steric effects present in MAA due to the methyl group at the α position of the monomer. Among the functionals used, the M06-2X/6-311+G(3df,2p)//B3LYP/6-31+G(d) methodology reproduces the experimental rate constants quantitatively the best. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013

Room Temperature Radiation Products in Trehalose Single Crystals: EMR and DFT analysis

H. De Cooman, M. Tarpan, H. Vrielinck, M. Waroquier, F. Callens
Radiation Research
179 (3), 313-322
2013
A1

Abstract 

Radicals generated in trehalose single crystals by X radiation at room temperature were investigated by electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and ENDOR-induced EPR measurements, together with periodic density functional theory calculations. In the first days after irradiation, three radical species (I1, I2 and I3) were detected, two of which (I1 and I2) dominate the EPR spectrum and could be identified as H-abstracted species centered at C3′ (I1) and C2 (I2), the latter with additional formation of a carbonyl group at C3. Annealing the sample at 40°C for 3 days or storing it in ambient conditions for three months resulted in another, more stable EPR spectrum. Two major species could be characterized in this stage (S1 and S2), only one of which was tentatively identified as an H-abstracted, C2-centered species (S1). Our findings disagree with a previous EPR study [Gräslund and Löfroth (23)] on several accounts. This work stresses the need for caution when interpreting composite EPR spectra and thermally induced spectral changes of radiation-induced species, even in these relatively simple carbohydrates. It also provides further evidence that the pathways for radiation damage critically depend on the specific conformation of a molecule and its environment, but also that carbonyl group formation is a common process in the radiation chemistry of sugars and related compounds.

Synthesis of 2-Hydroxy-1,4-oxazin-3-ones through Ring Transformation of 3-Hydroxy-4-(1,2-dihydroxyethyl)--lactams and a Study of Their Reactivity

K. Mollet, H. Goossens, N. Piens, S. Catak, M. Waroquier, V. Van Speybroeck, M. D'Hooghe, N. De Kimpe
Chemistry - A European Journal
19 (10), 3383-3396
2013
A1

Abstract 

The reactivity of 3-hydroxy-4-(1,2-dihydroxyethyl)-β-lactams with regard to the oxidant sodium periodate was evaluated, unexpectedly resulting in the exclusive formation of new 2-hydroxy-1,4-oxazin-3-ones through a C3C4 bond cleavage of the intermediate 4-formyl-3-hydroxy-β-lactams followed by a ring expansion. This peculiar transformation stands in sharp contrast with the known NaIO4-mediated oxidation of 3-alkoxy- and 3-phenoxy-4-(1,2-dihydroxyethyl)-β-lactams, which exclusively leads to the corresponding 4-formyl-β-lactams without a subsequent ring enlargement. In addition, this new class of functionalized oxazin-3-ones was further evaluated for its potential use as building blocks in the synthesis of a variety of differently substituted oxazin-3-ones, morpholin-3-ones and pyrazinones. Furthermore, additional insights into the mechanism and the factors governing this new ring-expansion reaction were provided by means of density functional theory calculations.

Accurate prediction of 1H-chemical shifts in interstrand cross-linked DNA

E. Pauwels, D.D. Claeys, J. Martins, M. Waroquier, G. Bifulco, V. Van Speybroeck, A. Madder
RSC Advances
2013 (3), 3925-3938
2013
A1

Abstract 

Structural analysis of modified DNA with NMR is becoming ever more difficult with increasingly complex compounds under scrutiny for use in medical diagnosis, therapeutics, material science and chemical synthesis. To facilitate this process, we develop a molecular modeling approach to predict proton chemical shifts in sufficient agreement with experimental NMR measurements to guide structure elucidation. It relies on a QM/MM partitioning scheme and first principle calculations to predict the spatial structure and calculate corresponding proton chemical shifts. It is shown that molecular dynamics simulations that take into account solvent and temperature effects properly are of utmost importance to sample the conformational space sufficiently. The proposed computational procedure is universally applicable to modified oligonucleotides and DNA, attaining a mean error for the proton chemical shifts of less than 0.2 ppm. Here, it is applied on the Drew-Dickerson d(CGCGAATTCGCG)2 dodecamer as a benchmark system and the mispair-aligned N3T-ethyl-N3T cross-linked d(CGAAAT*TTTCG)2 undecamer, illustrating its universal use as computational tool to assist in structure elucidation. For the proton chemical shifts in the cross-linked system our methodology yields a strikingly superior description, surpassing the predictive power of (semi-)empirical methods. In addition, our methodology is the only one available to make an accurate prediction for the protons in the actual cross-link. To the best of our knowledge, this is the first computational study that attempts to determine the chemical shifts of oligonucleotides of this size and at this level of complexity.

The Conformational Sensitivity of Iterative Stockholder Partitioning Schemes

T. Verstraelen, P.W. Ayers, V. Van Speybroeck, M. Waroquier
Chemical Physics Letters
545, 138-143
2012
A1

Abstract 

Chemical interpretation and empirical modeling of partial charges requires a robust partitioning scheme to derive these charges from the molecular electronic density. The degree of undesirable conformational sensitivity is assessed for three iterative stockholder partitioning schemes: Hirshfeld-I (HI), Iterative Stockholder Analysis (ISA) and a new Gaussian ISA variant (GISA). GISA has fewer degrees of freedom than ISA and enforces monotonically decaying pro-atoms. These improvements accelerate the converge of GISA as compared to ISA. However, the conformational sensitivity of the charges does not decrease and is still large compared to HI.

Open Access version available at UGent repository

Analysis of the basis set superposition error in molecular dynamics of hydrogen-bonded liquids: application to methanol

M. Van Houteghem, T. Verstraelen, A. Ghysels, L. Vanduyfhuys, M. Waroquier, V. Van Speybroeck
Journal of Chemical Physics
137 (10), 104506
2012
A1

Abstract 

An ecient protocol is presented to compensate for the basis set superposition error (BSSE) in DFT molecular dynamics (MD) simulations using localized Gaussian basis sets. We propose a classical correction term that can be added a posteriori to account for BSSE. It is tested to what extension this term will improve radial distribution functions (RDFs). The proposed term is pairwise between certain atoms in dierent molecules and was calibrated by tting reference BSSE data points computed with the counterpoise method. It is veried that the proposed exponential decaying functional form of the model is valid. This work focuses on hydrogen-bonded liquids, i.e. methanol, and more specic on the intermolecular hydrogen bond, but in principle the method is generally applicable on any type of interaction where BSSE is significant. We evaluated the relative importance of the Grimme-dispersion versus BSSE and found that they are of the same order of magnitude, but with an opposite sign. Upon introduction of the correction, the relevant RDFs, obtained from MD, have amplitudes equal to experiment.

Open Access version available at UGent repository

Catalytic Performance of Vanadium MIL-47 and Linker-Substituted Variants in the Oxidation of Cyclohexene: A Combined Theoretical and Experimental Approach

M. Vandichel, S. Biswas, K. Leus, J. Paier, J. Sauer, T. Verstraelen, P. Van der Voort, M. Waroquier, V. Van Speybroeck
ChemPlusChem
79 (8), 1183–1197
2014
A1

Abstract 

The epoxidation of cyclohexene has been investigated on a metal–organic framework MIL-47 containing saturated V+IV sites linked with functionalized terephthalate linkers (MIL-47-X, X=OH, F, Cl, Br, CH3, NH2). Experimental catalytic tests have been performed on the MIL-47-X materials to elucidate the effect of linker substitution on the conversion. Notwithstanding the fact that these substituted materials are prone to leaching in the performed catalytic tests, the initial catalytic activity of these materials correlates with the Hammett substituent constants. In general, substituents led to an increased activity relative to the parent MIL-47. To rationalize the experimental findings, first-principles kinetic calculations were performed on periodic models of MIL-47 to determine the most important active sites by creating defect structures in the interior of the crystalline material. In a next step these defect structures were used to propose extended cluster models, which are able to reproduce in an adequate way the direct environment of the active metal site. An alkylperoxo species V+VO(OOtBu) was identified as the most abundant and therefore the most active epoxidation site. The structure of the most active site was a starting basis for the construction of extended cluster models including substituents. They were used for quantifying the effect of functionalization of the linkers on the catalytic performance of the heterogeneous catalyst MIL-47-X. Electron-withdrawing as well as electron-donating groups have been considered. The epoxidation activity of the functionalized models has been compared with the measured experimental conversion of cyclohexene. The agreement is fairly good. This combined experimental–theoretical study makes it possible to elucidate the structure of the most active site and to quantify the electronic modulating effects of linker substituents on the catalytic activity.

Pages

Subscribe to RSS - M. Waroquier