E. Verheyen

Flexibility versus rigidity: what determines the stability of zeolite frameworks? A case study

E. Verheyen, L. Joos, C. Martineau, C.J. Dawson, C. Weidenthaler, W. Schmidt, R. Yuan, E. Breynaerts, V. Van Speybroeck, M. Waroquier, F. Taulelle, M.M.J. Treacy, J.A. Martens, C. Kirschhock
Materials Horizons
Vol. 1 , 582 - 587
2014
A1

Abstract 

All silica COK-14/-COK-14 with OKO topology is the first case of a zeolite which reversibly transforms from a systematically interrupted to a fully connected state and back. Analysis of the opening/closing behavior allowed the study of entropy and framework flexibility as determinants for the stability of zeolite topologies, which, until now, has been experimentally inaccessible. Interconversion of the all-silica COK-14 zeolite with fully connected OKO topology and its -COK-14 variant with systematic framework interruption was investigated using high-temperature XRD, thermogravimetric analysis, Si-29 MAS NMR, nitrogen adsorption and a range of modelling techniques. Specific framework bonds in the OKO framework can be reversibly hydrolyzed and condensed. Structural silanols of the parent -COK-14, prepared by degermanation of the IM-12 zeolite, were condensed by heating at 923 K, and hydrolyzed again to the initial state by contacting the zeolite with warm water. Molecular modelling revealed an inversion of the relative stabilities for both variants depending on temperature and hydration. Condensation of the structural silanols in -COK-14 to COK-14 is entropy driven, mainly resulting from the release of water molecules. Framework reopening in the presence of water is spontaneous due to the high rigidity of the fully connected OKO framework. Isomorphous substitution was demonstrated as a viable option for stabilization of the fully connected OKO framework as this renders the closed framework flexible.

UV-Raman and 29Si NMR Spectroscopy Investigation of the Nature of Silicate Oligomers Formed by Acid Catalyzed Hydrolysis and Polycondensation of Tetramethylorthosilicate

A. Depla, E. Verheyen, A. Verfeyken, M. Van Houteghem, K. Houthoofd, V. Van Speybroeck, M. Waroquier, C. Kirschhock, J.A. Martens
Journal of Physical Chemistry C
115(22), 11077-11088
2011
A1

Abstract 

Tetramethylorthosilicate (TMOS) was hydrolyzed and polymerized under strongly acidic conditions in the presence of substoichiometric quantities of water. The polymerization reaction was monitored during 64 h using 29Si NMR and UV-Raman spectroscopy. The nature of the oligomers and the condensation reaction pathways were unraveled using this combination of experimental techniques together with molecular modeling. 29Si NMR and UV-Raman signals which previously were not documented in literature could be assigned. TMOS rapidly was converted into short straight methoxylated silicate chains. Subsequently the growth of oligomers proceeded by condensations between a hydrolyzed middle group of a chain with an end-group of another chain. Larger oligomers were attached to each other via condensations between middle groups generating multiply branched structures. Rings were formed late in the reaction scheme through internal condensations of sizable silicate molecules. Oligomers that were characteristic of the different stages of the polymerization process were proposed. Oligomerization pathways starting from tetramethylorthosilicate and tetraethylorthosilicate (TEOS) are significantly different. While with TMOS rings are formed only late in the oligomerization scheme, with TEOS rings are formed at early stages through cyclo-dimerization. This insight into the different nature of the oligomers obtained from TMOS and TEOS will assist the design of new silica sol–gel materials.

Computational Study of the Reversible Opening and Closing of the COK-14 zeolite

ISBN/ISSN:
Talk

Conference / event / venue 

WATOC 2014 Satellite Meeting on Large Condensed and Biological Systems
Concepción, Chili
Monday, 13 October, 2014 to Tuesday, 14 October, 2014

Design of zeolite by inverse sigma transformation

E. Verheyen, L. Joos, K. Van Havenbergh, N. Kasian, E. Gobechiya, K. Houthoofd, M. Hinterstein, E. Breynaerts, V. Van Speybroeck, M. Waroquier, S. Bals, G. Van Tendeloo, C. Kirschhock, J.A. Martens
Nature Materials
11 (12), 1059-1064
2012
A1

Abstract 

Zeolites are silicon materials, that have channels and pores on the nanoscale. This paper reports the synthesis of a new zeolite, in which the pores were widened using a revolutionary synthesis method. The final material has a series of unique and special properties, useful for industrial processes. Molecular modeling was used to determine the structure of the material.

Zeolieten zijn materialen opgebouwd uit silicium, die op nanoschaal kanalen en poriën bevatten. Deze paper rapporteert de synthese van een nieuw type zeoliet, waarbij de kanalen op een revolutionaire manier werden vergroot. Het eindmateriaal heeft daarom een hele reeks aan unieke en bijzonder interessante eigenschappen voor een aantal industriële processen. Moleculaire modelering werd gebruikt om de structuur van het materiaal te bepalen.

A graphical representation of COK14:

Subscribe to RSS - E. Verheyen