D. Van Neck

Atomic Velocity Projection Method: A New Analysis Method for Vibrational Spectra in Terms of Internal Coordinates for a Better Understanding of Zeolite Nanogrowth

M. Van Houteghem, T. Verstraelen, D. Van Neck, C. Kirschhock, J.A. Martens, M. Waroquier, V. Van Speybroeck
Journal of Chemical Theory and Computation (JCTC)
7, 1045-1061
2011
A1

Abstract 

An efficient protocol is presented to identify signals in vibrational spectra of silica oligomers based on theoretical molecular dynamics (MD) simulations. The method is based on the projection of the atomic velocity vectors on the tangential directions of the trajectories belonging to a predefined set of internal coordinates. In this way only contributions of atomic motions along these internal coordinates are taken into consideration. The new methodology is applied to the spectra of oligomers and rings, which play an important role in zeolite synthesis. A suitable selection of the relevant internal coordinates makes the protocol very efficient but relies on intuition and theoretical insight. The simulation data necessary to compute vibrational spectra of relevant silica species are obtained through MD using proper force fields. The new methodology—the so-called velocity projection method—makes a detailed analysis of vibrational spectra possible by establishing a one-to-one correspondence between a spectral signal and a proper internal coordinate. It offers valuable perspectives in understanding the elementary steps in silica organization during zeolite nanogrowth. The so-called velocity projection method is generally applicable on data obtained from all types of MD and is a highly valuable alternative to normal-mode analysis which has its limitations due to the presence of many local minima on the potential energy surface. In this work the method is exclusively applied to inelastic neutron scattering, but extension to the infrared power spectrum is apparent.

Faddeev random-phase approximation for molecules

M. Degroote, D. Van Neck, C. Barbieri
Physical Review A
83, 042517
2011
A1

Abstract 

The Faddeev random-phase approximation is a Green’s function technique that makes use of Faddeev equations to couple the motion of a single electron to the two-particle–one-hole and two-hole–one-particle excitations. This method goes beyond the frequently used third-order algebraic diagrammatic construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are now described at the level of the random-phase approximation, which includes ground-state correlations, rather than at the Tamm-Dancoff approximation level, where ground-state correlations are excluded. Previously applied to atoms, this paper presents results for small molecules at equilibrium geometry. © 2011 American Physical Society

Open Access version available at UGent repository

A self-consistent Hirshfeld method for the atom in the molecule based on minimization of information loss

D. Ghillemijn, P. Bultinck, D. Van Neck, P.W. Ayers
Journal of Computational Chemistry
32, 1561-1567
2011
A1

Abstract 

Based on the so-called Hirshfeld atom in the molecule scheme, a new AIM method is presented. The method is similar to the Hirshfeld-I scheme, with the AIM weight function being constructed by minimizing the information loss upon formation of the molecule, but now requiring explicitly that the promolecular densities integrate to the same number of electrons as the AIM densities. This new weight function leads to a new iterative AIM scheme, and the resulting operative scheme is examined and discussed. The final results indicate that the newly proposed method does not perform as well as the Hirshfeld-I method.

Open Access version available at UGent repository

The significance of parameters in charge equilibration models

T. Verstraelen, P. Bultinck, V. Van Speybroeck, P.W. Ayers, D. Van Neck, M. Waroquier
Journal of Chemical Theory and Computation (JCTC)
7 (6), 1750-1764
2011
A1

Abstract 

Charge equilibration models such as the electronegativity equalization method (EEM) and the split charge equilibration (SQE) are extensively used in the literature for the efficient computation of accurate atomic charges in molecules. However, there is no consensus on a generic set of optimal parameters, even when one only considers parameters calibrated against atomic charges in organic molecules. In this work, the origin of the disagreement in the parameters is investigated by comparing and analyzing six sets of parameters based on two sets of molecules and three calibration procedures. The resulting statistical analysis clearly indicates that the conventional least-squares cost function based solely on atomic charges is in general ill-conditioned and not capable of fixing all parameters in a charge-equilibration model. Methodological guidelines are formulated to improve the stability of the parameters. Although in this case a simple interpretation of individual parameters is not possible, charge equilibration models remain of great practical use for the computation of atomic charges.

Pages

Subscribe to RSS - D. Van Neck