D. Van Neck

Coherent Compton scattering on light nuclei in the Δ-resonance region

L. Van Daele, A.Y. Korchin, D. Van Neck, O. Scholten, M. Waroquier
Physical Review C
65 (1), 014613
2001
A1

Abstract 

Coherent Compton scattering on light nuclei in the Δ-resonance region is studied in the impulse approximation and is shown to be a sensitive probe of the in-medium properties of the Δ resonance. The elementary amplitude on a single nucleon is calculated from the unitary K-matrix approach developed previously. Modifications of the properties of the Δ resonance due to the nuclear medium are accounted for through the self-energy operator of the Δ, calculated from the one-pion loop. The dominant medium effects such as the Pauli blocking, mean-field modification of the nucleon and Δ masses, and particle-hole excitations in the pion propagator are consistently included in nuclear matter.

Ab Initio Study of Radical Reactions: Cyclization Pathways for the Butylbenzene Radical (II)

V. Van Speybroeck, Y. Borremans, D. Van Neck, M. Waroquier, S. Wauters, M. Saeys, G.B. Marin
Journal of Physical Chemistry A
105 (32), 7713–7723
2001
A1

Abstract 

Ab initio density functional theory calculations are presented on some model reactions involved in coke formation during the thermal cracking of hydrocarbons. The reactions under consideration are different cyclization pathways for the butylbenzene radical, which can lead to a further growth of the coke layer. This study enables us to gain more microscopic insight into the mechanistic and kinetic aspects of the reactions. Special attention is paid to the exact treatment of internal rotations and their impact on the kinetic parameters. Pre-exponential factors are very sensitive to the accuracy of constructing the microscopic partition functions. In particular, the relative importance of cyclization toward five and six-membered rings is studied on the basis of the calculated rate constants and concentration profiles of the reactants. The influence of the size of the ring and of the relative stability of the primary and secondary butylbenzene radical on the cyclization reaction is discussed. The activation energy for the formation of six-membered rings is approximately 30 kJ/mol lower than that for five-ring formation. The predicted values for the kinetic parameters enable us to validate some basic assumptions on coke formation. The calculations as presented here are especially important for complex reaction schemes, for which experimental data are not always available.

v-representability of one-body density matrices

D. Van Neck, M. Waroquier, K. Peirs, V. Van Speybroeck
Physical Review A
64 (4), 042512
2001
A1

Abstract 

We consider low-dimensional model systems with a fixed two-body interaction and a variable (nonlocal) one-body potential. It is shown explicitly that an extended domain of allowed (N-representable) one-body density matrices cannot be generated in this way, the excluded domain depending on the two-body interaction under consideration. This stands in contrast to the behavior of the diagonal part of the density matrix.

Open Access version available at UGent repository

Self-consistent solution of Dyson’s equation up to second order for atomic systems

D. Van Neck, K. Peirs, M. Waroquier
Journal of Chemical Physics
115 (1), 15-25
2001
A1

Abstract 

In this paper, the single-particle Green’s function approach is applied to the atomic many-body problem. We present the self-consistent solution of the Dyson equation up to second order in the self-energy for nonrelativistic spin-compensated atoms. This Dyson second-order scheme requires the solution of the Hartree–Fock integro-differential equations as a preliminary step, which is performed in coordinate space (i.e., without an expansion in a basis set). To cope with the huge amount of poles generated in the iterative approach to tackle Dyson’s equation in second order, the BAGEL (BAsis GEnerated by Lanczos) algorithm is employed. The self-consistent scheme is tested on the atomic systems He, Be, Ne, Mg, and Ar with spin-saturated ground state 1S0. Predictions of the total binding energy, ionization energy, and single-particle levels are compared with those of other computational schemes [density functional theory, Hartree–Fock (HF), post-HF, and configuration interaction] and with experiment. The correlations included in the Dyson second-order algorithm produce a shift of the Hartree–Fock single-particle energies that allow for a close agreement with experiment. © 2001 American Institute of Physics.

Improved lower bounds for the ground-state energy of many-body systems

D. Van Neck, Y. Dewulf, M. Waroquier
Physical Review A
63, 062107
2001
A1

Abstract 

Alternative lower bounds for the binding energy of a quantum-mechanical system of interacting particles are presented. These bounds are expressed in terms of two-particle quantities and improve the conventional bounds of the Hall-Post type. They are constructed by considering not only the energy in the two-particle system, but also the structure of the pair wave function. We apply the formal results to various numerical examples, and show that in some cases dramatic improvement over the existing bounds is reached.

Short-range correlations in muclear matter using Green's functions within a discrete pole approximation

Y. Dewulf, D. Van Neck, M. Waroquier
Physics Letters B
510 (1-4), 89-97
2001
A1

Abstract 

We treat short-range correlations in nuclear matter, induced by the repulsive core of the nucleon–nucleon potential, within the framework of self-consistent Green's function theory. The effective in-medium interaction sums the ladder diagrams of both the particle–particle and hole–hole type. The demand of self-consistency results in a set of nonlinear equations which must be solved by iteration. We explore the possibility of approximating the single-particle Green's function by a limited number of poles and residues.

Reply to "Comment on "Radiative proton-deuteron capture in a gauge invariant relativistic model"

A.Y. Korchin, D. Van Neck, O. Scholten, M. Waroquier
Physical Review C
63 (1), 019802
2001
A1

Abstract 

In response to the preceding Comment we clarify the points raised and show that the arguments presented in the Comment are poorly substantiated.

Ab initio study of radical addition reactions: Addition of a primary ethylbenzene radical to ethene (I)

V. Van Speybroeck, D. Van Neck, M. Waroquier, S. Wauters, M. Saeys, G.B. Marin
Journal of Physical Chemistry A
104 (46), 10939–10950
2000
A1

Abstract 

Ab initio density functional theory calculations have been carried out on a model reaction involved in coke formation during the thermal cracking of hydrocarbons, namely, the addition of the ethylbenzene radical to ethene. This study enables one to get more microscopic insight into the mechanistic and kinetic aspects of the reaction. A profound ab initio conformational analysis of the formed products, reactants, and transition states is made. The impact of internal rotations on the two kinetic parameters deduced from transition state theory (TST), the activation energy and the preexponential factor, has been studied in detail. Furthermore, we report on the various components that govern the kinetic parameters. Preexponential factors are very sensitive to the accuracy of constructing the microscopic partition functions. Internal rotations play a dominant role in the reaction mechanism, and their impact on the preexponential factor is large. Hence, a very accurate handling of internal rotations is of crucial importance. We present a new algorithm to extract exactly on a quantum mechanical basis the partition functions of the internal rotations. The calculations as presented here are especially important for complex reaction schemes, for which experimental data are not always available.

Electron penetration into the nucleus and its effect on the quadrupole interaction

K. Koch, K. Koepernik, D. Van Neck, H. Rosner, S. Cottenier
Physical Review A
81, 032507
2010
A1

Abstract 

series expansion of the interaction between a nucleus and its surrounding electron distribution provides terms that are well-known in the study of hyperfine interactions: the familiar quadrupole interaction and the less familiar hexadecapole interaction. If the penetration of electrons into the nucleus is taken into account, various corrections to these multipole interactions appear. The best known correction is a scalar term related to the isotope shift and the isomer shift. This paper discusses a related tensor correction, which modifies the quadrupole interaction if electrons penetrate the nucleus: the quadrupole shift. We describe the mathematical formalism and provide first-principles calculations of the quadrupole shift for a large set of solids. Fully relativistic calculations that explicitly take a finite nucleus into account turn out to be mandatory. Our analysis shows that the quadrupole shift becomes appreciably large for heavy elements. Implications for experimental high-precision studies of quadrupole interactions and quadrupole moment ratios are discussed. A literature review of other small quadrupole-like effects is presented as well (pseudoquadrupole effect, isotopologue anomaly, etc.).

Open Access version available at UGent repository

Chemical verification of variational second-order density matrix based potential energy surfaces for the N2 isoelectronic series

H. van Aggelen, B. Verstichel, P. Bultinck, D. Van Neck, P.W. Ayers, D.L. Cooper
Journal of Chemical Physics
132, 114112
2010
A1

Abstract 

A variational optimization of the second-order density matrix under the P-, Q-, and G-conditions was carried out for a set of diatomic 14-electron molecules, including N2, O22+, NO+, CO, and CN−. The dissociation of these molecules is studied by analyzing several chemical properties (dipole moments, population analysis, and bond indices) up to the dissociation limit (10 and 20 Å). Serious chemical flaws are observed for the heteronuclear diatomics in the dissociation limit. A careful examination of the chemical properties reveals that the origin of the dissociation problem lies in the flawed description of fractionally occupied species under the P-, Q-, and G-conditions. A novel constraint is introduced that imposes the correct dissociation and enforces size consistency. The effect of this constraint is illustrated with calculations on NO+, CO, CN−, N2, and O22+.

Open Access version available at UGent repository

Pages

Subscribe to RSS - D. Van Neck