V. Van Speybroeck

Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34

K. De Wispelaere, K. Hemelsoet, M. Waroquier, V. Van Speybroeck
Journal of Catalysis
305, 76-80
2013
A1

Abstract 

The methanol to olefins process is an alternative for oil-based production of ethene and propene. However, detailed information on the reaction mechanisms of olefin formation in different zeolite is lacking. Herein a first principle kinetic study allows elucidating the importance of a side-chain mechanism during methanol conversion in H-SAPO-34. Starting from the experimentally observed hexamethylbenzene, a full low-barrier catalytic cycle for ethene and propene formation is found. The olefin elimination steps exhibit low free energy barriers due to a subtle interplay between an sp3 carbon center of the organic intermediate, stabilizing non-bonding interactions and assisting water molecules in the zeolite material.

Open Access version available at UGent repository

Unraveling the Reaction Mechanisms Governing Methanol-to-Olefins Catalysis by Theory and Experiment

K. Hemelsoet, J. Van der Mynsbrugge, K. De Wispelaere, M. Waroquier, V. Van Speybroeck
ChemPhysChem
14 (8),1526-1545
2013
A1

Abstract 

The conversion of methanol to olefins (MTO) over a heterogeneous nanoporous catalyst material is a highly complex process involving a cascade of elementary reactions. The elucidation of the reaction mechanisms leading to either the desired production of ethene and/or propene or undesired deactivation has challenged researchers for many decades. Clearly, catalyst choice, in particular topology and acidity, as well as the specific process conditions determine the overall MTO activity and selectivity; however, the subtle balances between these factors remain not fully understood. In this review, an overview of proposed reaction mechanisms for the MTO process is given, focusing on the archetypal MTO catalysts, H-ZSM-5 and H-SAPO-34. The presence of organic species, that is, the so-called hydrocarbon pool, in the inorganic framework forms the starting point for the majority of the mechanistic routes. The combination of theory and experiment enables a detailed description of reaction mechanisms and corresponding reaction intermediates. The identification of such intermediates occurs by different spectroscopic techniques, for which theory and experiment also complement each other. Depending on the catalyst topology, reaction mechanisms proposed thus far involve aromatic or aliphatic intermediates. Ab initio simulations taking into account the zeolitic environment can nowadays be used to obtain reliable reaction barriers and chemical kinetics of individual reactions. As a result, computational chemistry and by extension computational spectroscopy have matured to the level at which reliable theoretical data can be obtained, supplying information that is very hard to acquire experimentally. Special emphasis is given to theoretical developments that open new perspectives and possibilities that aid to unravel a process as complex as methanol conversion over an acidic porous material.

On the thermodynamics of framework breathing: A free energy model for gas adsorption in MIL-53

A. Ghysels, L. Vanduyfhuys, M. Vandichel, M. Waroquier, V. Van Speybroeck, B. Smit
Journal of Physical Chemistry C
117, 11540-11554
2013
A1

Abstract 

When adsorbing guest molecules, the porous metal-organic framework MIL-53(Cr) may vary its cell parameters drastically while retaining its crystallinity. A first approach to the thermodynamic analysis of this 'framework breathing' consists of comparing the osmotic potential in two distinct shapes only (large-pore and narrow-pore). In this paper, we propose a generic parametrized free energy model including three contributions: host free energy, guest-guest interactions, and host-guest interaction. Free energy landscapes may now be constructed scanning all shapes and any adsorbed amount of guest molecules. This allows to determine which shapes are the most stable states for arbitrary combinations of experimental control parameters, such as the adsorbing gas chemical potential, the external pressure, and the temperature. The new model correctly reproduces the structural transitions along the CO2 and CH4 isotherms. Moreover, our model successfully explains the adsorption versus desorption hysteresis as a consequence of the creation, stabilization, destabilization, and disappearance of a second free energy minimum under the assumptions of a first order phase transition and collective behavior. Our general thermodynamic description allows to decouple the gas chemical potential μ and mechanical pressure P as two independent thermodynamic variables and predict the complete (μ,P) phase diagram for CO2 adsorption in MIL-53(Cr). The free energy model proposed here is an important step towards a general thermodynamics description of flexible metal-organic frameworks.

Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: total versus accessible silanols

M. Ide, M. El-Roz, E. De Canck, A. Vicente, T. Planckaert, T. Bogaerts, I. Van Driessche, F. Lynen, V. Van Speybroeck, F. Thibault-Starzyk, P. Van der Voort
Physical Chemistry Chemical Physics (PCCP)
15, 642-650
2013
A1

Abstract 

IR and NMR spectroscopy were used to determine the silanol content in the most common mesoporous ordered silicas: MCM-41, MCM-48, SBA-15 and SBA-16. In addition, a spray dried MCM-41 and an ethene bridged PMO are investigated. The results are compared with a commercial chromatographic silica (Nucleosil). The complete distribution of surface and bulk silanols, and of isolated, geminal and vicinal silanols for all these materials is presented. A distinction is made between the total silanol number and the reachable or surface silanol content. The latter is determined by controlled reactions with simple silanes. All mesoporous ordered silicas, and especially the thick walled SBA-type materials and the PMO contain a surprisingly high amount of total silanol sites, albeit that up to 90% if these silanols are buried inside the walls and are not reachable for small silanes.

Diphosphonylation of Aromatic Diazaheterocycles and Theoretical Rationalization of Product Yields

A. De Blieck, S. Catak, W. Debrouwer, J. Drabowicz, K. Hemelsoet, T. Verstraelen, M. Waroquier, V. Van Speybroeck, C. Stevens
European Journal of Organic Chemistry
2013 (6), 1058-1067
2013
A1

Abstract 

Diphosphonylated diazaheterocyclic compounds were synthesized in a one-step reaction by using dimethyl trimethylsilyl phosphite (DMPTMS) under acidic conditions. The reaction of DMPTMS with 1,5-naphthyridine yielded the corresponding diphosphonylated product through a tandem 1,4–1,2 addition under microwave conditions. This tandem 1,4–1,2 addition was also evaluated for other substrates, namely, 1,10-phenanthroline, 1,7-phenanthroline and 4,7-phenanthroline. Reactions under reflux and microwave conditions were compared. 1,5-Naphthyridine and the phenanthroline derived substrates are less reactive than previously investigated quinolines. The experimental trends in reactivity were rationalized by means of theoretical calculations. The intrinsic properties, such as aromaticity and proton affinities, showed distinct differences for the various substrates. Furthermore, the calculated free energies of activation for the rate-determining step of the tandem addition reaction enabled us to rationalize the differences in product yields. Both the theoretical and the experimental results show the substantial influence of the position of the nitrogen atoms in the (poly)aromatic compounds on the reaction outcome.

Tuning of CeO2 buffer layers for coated superconductors through doping

D.E.P. Vanpoucke, S. Cottenier, V. Van Speybroeck, P. Bultinck, I. Van Driessche
Applied Surface Science
260, 32-35
2012
A1

Abstract 

The appearance of microcracks in cerium oxide (CeO 2) buffer layers, as used in buffer layer architectures for coated superconductors, indicates the presence of stress between this buffer layer and the substrate. This stress can originate from the differences in thermal expansion or differences in lattice parameters between the CeO 2 buffer layer and the substrate. In this article, we study, by means of ab initio density functional theory calculations, the influence of group IV doping elements on the lattice parameter and bulk modulus of CeO 2. Vegard's law behavior is found for the lattice parameter in systems without oxygen vacancies, and the Shannon crystal radii for the doping elements are retrieved from the lattice expansions. We show that the lattice parameter of the doped CeO 2 can be matched to that of the La 2Zr 2O 7 coated NiW substrate substrate for dopant concentrations of about 5%, and that bulk modulus matching is either not possible or would require extreme doping concentrations. [All rights reserved Elsevier].

Open Access version available at UGent repository

ACKS2: Atom-Condensed Kohn-Sham DFT approximated to second order

T. Verstraelen, P.W. Ayers, V. Van Speybroeck, M. Waroquier
Journal of Chemical Physics
138, 7, 07408
2013
A1

Abstract 

A new polarizable force field (PFF), namely atom-condensed Kohn-Sham density functional theory approximated to second order (ACKS2), is proposed for the efficient computation of atomic charges and linear response properties of extended molecular systems. It is derived from Kohn-Sham density functional theory (KS-DFT), making use of two novel ingredients in the context of PFFs: (i) constrained atomic populations and (ii) the Legendre transform of the Kohn-Sham kinetic energy. ACKS2 is essentially an extension of the Electronegativity Equalization Method (EEM) [W. J. Mortier, S. K. Ghosh, and S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986)]10.1021/ja00275a013 in which two major EEM shortcomings are fixed: ACKS2 predicts a linear size-dependence of the dipole polarizability in the macroscopic limit and correctly describes the charge distribution when a molecule dissociates. All ACKS2 parameters are defined as atoms-in-molecules expectation values. The implementation of ACKS2 is very similar to that of EEM, with only a small increase in computational cost.

Open Access version available at UGent repository

Entropy-Driven Chemisorption of NOx on Phosphotungstic Acid

S. Heylen, L. Joos, V. Van Speybroeck, C. Kirschhock, J.A. Martens
Angewandte Chemie int. Ed.
51 (44), 11010-11013
2012
A1

Abstract 

Nitrogen oxides, NOx, are formed in combustion engines. They contribute to acid rain and the formation of ozone and are hazardous for men and environment. In this article, a process was investigated that can 'capture' the NOx from the exhaust gases using heteropoly acids and can later release them for processing. One of the main conclusions is that the mobility of the captured and released molecules is the key to control the reaction. This can now be used to optimize and commercialize the technology.

Stikstofoxiden, aangeduid als NOx, worden gevormd in verbrandingsmotoren. Ze dragen bij tot zure regen, de vorming van ozon en zijn dus schadelijk voor mens en milieu. In dit artikel werd een proces onderzocht dat de NOx kan ‘vangen’ uit de uitlaatgassen aan de hand van heteropolyzuren en later terug kan vrijgeven voor verdere verwerking. Een van de belangrijkste vaststellingen is dat de mobiliteit van de opgeslagen en vrijgegeven moleculen de sleutel is voor het controleren van het proces. De conclusies van het onderzoek kunnen nu verder gebruikt worden voor de optimalisering en commercialisering van het proces.

http://www.ugent.be/nl/actueel/nieuws/persberichten/stikstofoxide-nox-ve...

NOx adsorption on Phosphotungstic acid is entropy-driven due to the watermolecules that are released.

Origins of the Solvent Effect on the Propagation Kinetics of Acrylic Acid and Methacrylic Acid

I. Değirmenci, T. Furuncuoğlu, O. Karahan, V. Van Speybroeck, M. Waroquier, V. Aviyente
Journal of Polymer Science Part A: Polymer Chemistry
51 (9), 2024–2034
2013
A1

Abstract 

In this study, the relative rate of polymerization of acrylic acid (AA) versus methacrylic acid (MAA) and the effect of water on the polymerization kinetics are investigated within a combined static and molecular dynamics set of computational tools. Experimentally the relative rate of propagation of AA versus MAA is around 35 in bulk and 31 in water. Classical Molecular Dynamics calculations have been carried out to determine the location of the solvent molecules in the proximity of the dimeric poly(AA) and poly(MAA) units. A combined implicit/explicit solvent model was used for the evaluation of the kinetics of the dimeric polymer chains. We show that the rate acceleration of both polymers in water is mainly due to entropic rather than electrostatic effects and is in agreement with experimental findings. Moreover the slower propagation rate of MAA versus AA is ascribed to additional steric effects present in MAA due to the methyl group at the α position of the monomer. Among the functionals used, the M06-2X/6-311+G(3df,2p)//B3LYP/6-31+G(d) methodology reproduces the experimental rate constants quantitatively the best. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013

Ti-functionalized NH2-MIL-47: an effective and stable epoxidation catalyst

K. Leus, G. Vanhaelewyn, T. Bogaerts, Y-Y Liu, F. Esquivel, F. Callens, G.B. Marin, V. Van Speybroeck, H. Vrielinck, P. Van der Voort
Catalysis Today
208, 97-105
2013
A1

Abstract 

In this paper, we describe the post-functionalization of a V-containing Metal-organic framework with TiO(acac)2 to create a bimetallic oxidation catalyst. The catalytic performance of this V/Ti-MOF was examined for the oxidation of cyclohexene using molecular oxygen as oxidant in combination with cyclohexanecarboxaldehyde as co-oxidant. A significantly higher cyclohexene conversion was observed for the bimetallic catalyst compared to the non-functionalized material. Moreover, the catalyst could be recycled at least 3 times without loss of activity and stability. No detectable leaching of V or Ti was noted. Electron paramagnetic resonance measurements were performed to monitor the fraction of V-ions in the catalyst in the +IV valence state. A reduction of this fraction by ∼17% after oxidation catalysis is observed, in agreement with the generally accepted mechanism for this type of reaction.

Pages

Subscribe to RSS - V. Van Speybroeck