V. Van Speybroeck

Substituent effects on absorption spectra of pH-indicators: An experimental and computational study of sulfonphthaleine dyes

T. De Meyer, K. Hemelsoet, V. Van Speybroeck, K. De Clerck
Dyes and Pigments
102, 241-250
2014
A1

Abstract 

Sulfonphthaleine dyes are an important class of pH indicators, finding applications in novel (textile) sensors. In this paper, we present a combined experimental and theoretical study to elucidate the halochromic behaviour of a large set of sulfonphthaleine compounds. Starting from an experimental analysis consisting of UV/Vis spectroscopy, the pH region and the absorption wavelengths related to the colour shift are obtained and pKa values are derived. The effect of the substituents on the pH region can be traced back to their electron donating/withdrawing properties. Time-Dependent Density Functional Theory (TD-DFT) is able to adequately produce the trend in experimental wavelengths. Proton affinities are used to assess the effect of substituents on the pH region. The combination of theory and experiment is able to give a better understanding of the pH sensitivity; the methodology in this work will be useful in future dye design and is applicable to other dye classes as well.

Open Access version available at UGent repository

Molecular dynamics kinetic study on the zeolite-catalyzed benzene methylation in ZSM-5

S. Moors, K. De Wispelaere, J. Van der Mynsbrugge, M. Waroquier, V. Van Speybroeck
ACS Catalysis
2013 (3), 2556–2567
2013
A1

Abstract 

The methylation of arenes is a key step in the production of hydrocarbons from methanol over acidic zeolites. We performed ab initio static and molecular dynamics free energy simulations of the benzene methylation in H-ZSM-5 to determine the factors that influence the reaction kinetics. Special emphasis is given to the effect of surrounding methanol molecules on the methylation kinetics. It is found that for higher methanol loadings methylation may also occur from a protonated methanol cluster, indicating that the exact location of the Brønsted acid site is not essential for the zeolite-catalyzed methylation reaction. However, methylations from a protonated methanol cluster exhibit higher free energy barriers than a methylation from a single methanol molecule. Finally, comparison with a pure methanol solvent reaction environment indicates that the main role of the zeolite during the methylation of benzene is to provide the acidic proton and to create a polar environment for the reaction. The metadynamics approach, which is specifically designed to sample rare events, allows exploring new reaction pathways, which take into account the flexibility of the framework and additional guest molecules in the pores and channels of the zeolite framework. This approach goes beyond the often applied static calculations to determine reaction kinetics.

Crystal structure prediction for supersaturated AZO : the case of Zn3Al2O6

K. Rijpstra, S. Cottenier, M. Waroquier, V. Van Speybroeck
CrystEngComm
2013 (15), 10440-10444
2013
A1

Abstract 

Increasing the Al concentration in Al-doped ZnO (AZO) is one way of improving the conductivity of this transparent conductive oxide (TCO). Beyond a certain concentration, an unwanted secondary phase develops with a low conductivity. Its stoichiometry is Zn3Al2O6, and its crystal structure has not yet been convincingly determined. By applying unbiased ab initio structure prediction tools, we predict the crystal structure of Zn3Al2O6 to be monoclinic with space group Pm. It can be described as a nanofabric, with one-dimensional Al2O3 wires penetrating a ZnO matrix. This crystal has a formation energy that is lower than any structure proposed before, and is consistent with all available experimental information. Knowledge of the nature of this phase can help to avoid its formation and therefore to engineer AZO crystals with an increased level of Al-doping and associated increased conductivity.

New Functionalized Metal–Organic Frameworks MIL-47-X (X = −Cl, −Br, −CH3, −CF3, −OH, −OCH3): Synthesis, Characterization, and CO2 Adsorption Properties

S. Biswas, D.E.P. Vanpoucke, T. Verstraelen, M. Vandichel, S. Couck, K. Leus, Y-Y Liu, M. Waroquier, V. Van Speybroeck, J.F.M. Denayer, P. Van der Voort
Journal of Physical Chemistry C
117 (44), 22784–22796
2013
A1

Abstract 

Six new functionalized vanadium hydroxo terephthalates [VIII(OH)(BDC-X)]•n(guests) (MIL-47(VIII)-X-AS) (BDC = 1,4-benzenedicarboxylate; X = -Cl; -Br, -CH3, -CF3, -OH, -OCH3; AS = as-synthesized) along with the parent MIL-47 were synthesized under rapid microwave-assisted hydrothermal conditions (170 ºC, 30 min, 150 W). The unreacted H2BDC-X and/or occluded solvent molecules can be removed by thermal activation under vacuum leading to the empty-pore forms of the title compounds (MIL-47(VIV)-X). Except pristine MIL-47 (+III oxidation state), the vanadium atoms in all the evacuated functionalized solids stayed in +IV oxidation state. The phase purity of the compounds was ascertained by X-ray powder diffraction (XRPD), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, Raman, thermogravimetric (TG), and elemental analysis. The structural similarity of the filled and empty-pore forms of the functionalized compounds with the respective forms of parent MIL-47 was verified by cell parameter determination from XRPD data. TGA and temperature-dependent XRPD (TDXRPD) experiments in air atmosphere indicate high thermal stability in the range 330-385 ºC. All the thermally activated compounds exhibit significant microporosity (SLangmuir in the range 418-1104 m2 g-1), as verified by the N2 and CO2 sorption analysis. Among the six functionalized compounds, MIL-47(VIV)-OCH3 shows the highest CO2 uptake, demonstrating the determining role of functional groups on the CO2 sorption behaviour. For this compound and pristine MIL-47(VIV), Widom particle insertion simulations were performed based on ab initio calculated crystal structures. The theoretical Henry coefficients show a good agreement with the experimental values, and calculated isosurfaces for the local excess chemical potential indicate the enhanced CO2 affinity is due to two effects: (i) the interaction between the methoxy group and CO2 and (ii) the collapse of the MIL-47(VIV)-OCH3 framework.

Mn-salen@MIL101(Al) a heterogeneous, enantioselective catalyst using a ‘bottle around the ship’ approach

T. Bogaerts, A. Van Yperen-De Deyne, Y-Y Liu, F. Lynen, V. Van Speybroeck, P. Van der Voort
Chemical Communications
2013 (49), 8021-8023
2013
A1

Abstract 

An enantioselective catalyst, consisting of a chiral Mn(III)salen complex entrapped in the MIL-101 metal organic framework is reported. For the first time, we assemble a robust MOF-cage around a delicate chiral complex, without affecting the structure and stability of this complex. The newly prepared heterogeneous catalyst shows the same enantioselective excess compared to the homogeneous Mn(III)salen complex and is fully recyclable. Theoretical calculations yield insight into the dimensions of the various transition states of the epoxidation reaction.

Bimetallic–Organic Framework as a Zero-Leaching Catalyst in the Aerobic Oxidation of Cyclohexene

Y-Y Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck, P. Van der Voort
ChemCatChem
5 (12), 3657–3664
2013
A1

Abstract 

A gallium 2,2′-bipyridine-5,5′-dicarboxylate metal–organic framework (MOF), denoted as COMOC-4, has been synthesized by solvothermal synthesis. This MOF exhibits the same topology as MOF-253. CuCl2 was incorporated into COMOC-4 by a post-synthetic modification (PSM). The spectroscopic absorption properties of the MOF framework before and after PSM were compared with theoretical data obtained by employing molecular dynamics combined with time-dependent DFT calculations on both the as-synthesized and functionalized linker. The catalytic behavior of the resulting Cu2+@COMOC-4 material was evaluated in the aerobic oxidation of cyclohexene with isobutyraldehyde as a co-oxidant. In addition, the catalytic performance of Cu2+@COMOC-4 was compared with that of the commercially available Cu-BTC (BTC=benzene-1,3,5-tricarboxylate) MOF. Cu2+@COMOC-4 exhibits a good cyclohexene conversion and an excellent selectivity towards cyclohexene oxide in comparison to the Cu-based reference catalyst. Furthermore, no leaching of the active Cu sites was observed during at least four consecutive runs.

Solution Enthalpy of Po and Te in solid Lead-Bismuth Eutectic

K. Rijpstra, A. Van Yperen-De Deyne, J. Neuhausen, V. Van Speybroeck, S. Cottenier
Journal of Nuclear Materials
450 (1–3), 287–291
2014
A1

Abstract 

It is examined to which extent first-principles calculations can be used to collect a priori information on the solution enthalpy and solubility of Po in solid lead-bismuth eutectic (LBE). Such information can be helpful to limit the number of complicated experiments that are required to measure these properties. It is found that in the thermodynamic limit and at 0 K, Po does not dissolve in solid LBE. Its solution enthalpy is negative, in particular in Pb-rich environments, but competing compound-forming reactions are more exothermic. A clear correlation is found between the calculated solution enthalpies for Te in LBE and for Po in LBE, suggesting that Te-experiments can be used to map the expected behaviour for Po. The role of spin-orbit coupling as the major relativistic effect on the solution enthalpies of these heavy atoms is inspected.

Ranking the stars: A refined Pareto approach to computational materials design

K. Lejaeghere, S. Cottenier, V. Van Speybroeck
Physical Review Letters
111 (7), 075501
2013
A1

Abstract 

We propose a procedure to rank the most interesting solutions from high-throughput materials design studies. Such a tool is becoming indispensable due to the growing size of computational screening studies and the large number of criteria involved in realistic materials design. As a proof of principle, the binary tungsten alloys are screened for both large-weight and high-impact materials, as well as for fusion reactor applications. Moreover, the concept is generally applicable to any design problem where multiple competing criteria have to be optimized.

Open Access version available at UGent repository

Cationic ring-opening polymerization of 2-propyl-2-oxazolines: Understanding structural effects on polymerization behavior based on molecular modeling

H. Goossens, S. Catak, M. Glassner, V. De La Rosa, B. Monnery, F. De Proft, V. Van Speybroeck, R. Hoogenboom
ACS Macro Letters
2, 651-654
2013
A1

Abstract 

The surprising difference in the cationic ring-opening polymerization rate of 2-cyclopropyl-2-oxazoline versus 2-n-propyl-2-oxazoline and 2-isopropyl-2-oxazoline was investigated both experimentally and theoretically. The polymerization kinetics of all three oxazolines were experimentally measured in acetonitrile at 140 °C, and the polymerization rate constant (kp) was found to decrease in the order c-PropOx > n-PropOx > i-PropOx. Theoretical free energy calculations confirmed the trend for kp, and a set of DFT-based reactivity descriptors, electrostatics, and frontier molecular orbitals were studied to detect the factors controlling this peculiar behavior. Our results show that the observed reactivity is dictated by electrostatic effects. More in particular, the charge on the nitrogen atom of the monomer, used to measure its nucleophilicity, was the most negative for c-PropOx. Furthermore, the electrophilicity of the cations does not change substantially, and thus, the nucleophilicity of the monomers is the driving factor for kp.

Identification of intermediates in zeolite-catalyzed reactions using in-situ UV/Vis micro-spectroscopy and a complementary set of molecular simulations

K. Hemelsoet, Q. Qian, T. De Meyer, K. De Wispelaere, B. De Sterck, B. M. Weckhuysen, M. Waroquier, V. Van Speybroeck
Chemistry - A European Journal
19, 49, 16595-16606
2013
A1

Abstract 

The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.

Pages

Subscribe to RSS - V. Van Speybroeck