V. Van Speybroeck

Synthesis modulation as a tool to increase the catalytic activity of MOFs: the unique case of UiO-66(Zr)

F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. De Vos
JACS (Journal of the American Chemical Society)
135 (31), 11465–11468
2013
A1

Abstract 

The catalytic activity of the zirconium terephthalate UiO-66(Zr) can be drastically increased by using a modulation approach. The combined use of trifluoroacetic acid and HCl during the synthesis results in a highly crystalline material, with partial substitution of terephthalates by trifluoroacetate. Thermal activation of the material leads not only to dehydroxylation of the hexanuclear Zr cluster but also to post-synthetic removal of the trifluoroacetate groups, resulting in a more open framework with a large number of open sites. Consequently, the material is a highly active catalyst for several Lewis acid catalyzed reactions.

Trans Effect and Trans Influence: Repulsion, rather than Competition for Donation

B. Pinter, V. Van Speybroeck, M. Waroquier, P. Geerlings, F. De Proft
Physical Chemistry Chemical Physics (PCCP)
15 (40), 17354-17365
2013
A1

Abstract 

The trans effect and trans influence were investigated and rationalized in the aminolysis, a typical nucleophilic substitution reaction, of trans-TPtCl2NH3 complexes (T = NH3, PH3, CO and C2H4) using energy decomposition analysis, both along the reaction paths and on the stationary points, and Natural Orbital for Chemical Valence analysis. In order to scrutinize the underlying principles and the origin of the kinetic trans effect, plausible structural constraints were introduced in the decomposition analysis, which allowed eliminating the distance dependence of the interaction energy components. It was established that the trans effect can be rationalized with the interaction of the TPtCl2 and NH3 fragments in the reactant state and TPtCl2 and (NH3)2 fragments in the transition state. It was evinced quantitatively that the σ-donor ability of T indeed controls the stability of the reactant, whereas in the case of π-acids, backdonation stabilizes the transition state, for which conceptually two mechanisms are available: intrinsic and induced π-backdonation. In the destabilization of the reactant and also in the labilization of the leaving group (trans influence) repulsion plays a more important role than orbital sharing effects, which are the cornerstones of the widely accepted interpretations of the trans influence, such as competition for donation or limitation of the donation of the leaving group by the trans ligand T. This repulsive interaction was rationalized both in terms of donated electron density and also in the molecular orbital framework. NOCV orbitals indeed clearly show that the σ-trans effect can be envisioned as a donation from the trans ligand not only to the metal but also to the σ* orbital of the metal-leaving group bond, which manifests as a repulsion between the metal and the leaving group.

Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions

J. Van der Mynsbrugge, J. De Ridder, K. Hemelsoet, M. Waroquier, V. Van Speybroeck
Chemistry - A European Journal
19 (35), 11568-11576
2013
A1

Abstract 

The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts.

Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization

M. Vandichel, F. Vermoortele, S. Cottenie, D. De Vos, M. Waroquier, V. Van Speybroeck
Journal of Catalysis
305, 118-129
2013
A1

Abstract 

Industrial (-)-menthol production generally relies on the hydrogenation of (-)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum tris(2,6-diphenylphenoxide) (ATPH) and the heterogeneous metal-organic framework Cu3BTC2 (BTC = benzene-1,3,5-tricarboxylate). ATPH is a strong Lewis acid homogeneous catalyst with bulky ligands which provides very high selectivities for the desired stereo-isomer (> 99 %). The performance of the catalysts was evaluated as a function of temperature, which revealed that higher catalyst activity allows working at lower temperatures and improves the selectivity for isopulegol. The selectivity distribution is kinetically driven for ZnBr2 and ATPH. The theoretical selectivity distributions rely on the determination of an extensive set of diastereomeric transition states, for which the differences in free energy have been calculated using a complementary set of ab initio techniques. Given the sensitivity of the selectivity to small Gibbs free energy differences, the agreement between experimental and theoretical selectivities is satisfactory. On basis of the obtained insights rational design of new catalysts may be obtained. As proof of concept, the hypothetical Cu3(BTC-(NO2)3)2 Lewis catalyst – in which each phenyl hydrogen of the BTC ligand is replaced by a nitro group - is predicted to be very selective.

Open Access version available at UGent repository

Determining the Storage, Availability and Reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction Systems

I. Lezcano-Gonzalez, U. Deka, A. Van Yperen-De Deyne, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, B. M. Weckhuysen, A. M. Beale
Physical Chemistry Chemical Physics (PCCP)
16, 1639-1650
2014
A1

Abstract 

Three different types of NH3 species can be simultaneously present on Cu2+-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4+), formed on the Bronsted acid sites, [Cu(NH3)(4)](2+) complexes, resulting from NH3 coordination with the Cu2+ Lewis sites, and NH3 adsorbed on extra-framework Al ( EFAl) species, in contrast to the only two reacting NH3 species recently reported on Cu-SSZ-13 zeolite. The NH4+ ions react very slowly in comparison to NH3 coordinated to Cu2+ ions and are likely to contribute little to the standard NH3-SCR process, with the Bronsted groups acting primarily as NH3 storage sites. The availability/ reactivity of NH4+ ions can be however, notably improved by submitting the zeolite to repeated exchanges with Cu2+, accompanied by a remarkable enhancement in the low temperature activity. Moreover, the presence of EFAl species could also have a positive influence on the reaction rate of the available NH4+ ions. These results have important implications for NH3 storage and availability in Cu-Chabazite-based NH3-SCR systems.

Covalent immobilization of the Jacobsen catalyst on mesoporous phenolic polymer: a highly enantioselective and stable asymmetric epoxidation catalyst

J. De Decker, T. Bogaerts, I. Muylaert, S. Delahaye, F. Lynen, V. Van Speybroeck, A. Verberckmoes, P. Van der Voort
Materials Chemistry and Physics
141 (2013), 967-972
2013
A1

Abstract 

The Jacobsen catalyst, N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese (III) chloride is covalently immobilized on mesoporous phenolic resin through a direct and simple procedure. The immobilization is evident from nitrogen sorption and quantitative XRF measurements. A complex loading of 0.09 mmol g−1 is obtained, corresponding to well dispersed Mn-complexes on the surface of the mesoporous phenolic resin. This novel catalytic system shows good catalytic activity and excellent enantioselectivity in the asymmetric epoxidation of 1,2-dialin. The heterogenized Jacobsen catalyst is demonstrated to be a re-usable and non-leaching catalytic system.

Open Access version available at UGent repository

Bipyridine-Based Nanosized Metal–Organic Framework with Tunable Luminescence by a Postmodification with Eu(III): An Experimental and Theoretical Study

Y-Y Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A. M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van der Voort
Journal of Physical Chemistry C
117 (21), 11302–11310
2013
A1

Abstract 

A gallium 2,2′-bipyridine-5,5′-dicarboxylate metal-organic framework, Ga(OH)(bpydc), denoted as COMOC-4 (COMOC = Center for Ordered Materials, Organometallics and Catalysis, Ghent University) has been synthesized via solvothermal synthesis procedure. The structure has the topology of an aluminum 2,2′-bipyridine-5,5′-dicarboxylate, the so-called MOF-253. TEM and SEM micrographs show the COMOC-4 crystals are formed in nanoplates with uniform size of 30-50 nm. The UV-Vis spectra of COMOC-4 in methanol solution show maximal electronic absorption at 307 nm. This results from linker to linker transitions as elucidated by time-dependent density functional theory simulations on the linker and COMOC-4 cluster models. When excited at 400 nm, COMOC-4 displays an emission band centered at 542 nm. Upon immersion in different solvents, the emission band for the framework is shifted in the range of 525~548 nm, depending on the solvent. After incorporating Eu3+ cations, the emission band of the framework is shifted to even shorter wavelengths (505 nm). By varying the excitation wavelengths from 250 to 400 nm, we can fine-tune the emission from red to yellowish green in the CIE diagram. The luminescence behavior of Eu3+ cations is well preserved and the solid state luminescence lifetimes of λ1 = 45 µs (35.4 %) and λ2 = 162 µs (64.6 %) are observed.

Hirshfeld-E partitioning: AIM charges with an improved trade-off between robustness and accurate electrostatics

T. Verstraelen, P.W. Ayers, V. Van Speybroeck, M. Waroquier
Journal of Chemical Theory and Computation (JCTC)
9 (5), 2221–2225
2013
A1

Abstract 

For the development of ab-initio derived force fields, atomic charges must be computed from electronic structure computations, such that (i) they accurately describe the molecular electrostatic potential (ESP) and (ii) they are transferable to the force-field application of interest. The Iterative Hirshfeld (Hirshfeld-I or HI) scheme meets both requirements for organic molecules. For inorganic oxide clusters, however, Hirshfeld-I becomes ambiguous because electron densities of nonexistent isolated anions are needed as input. Herein, we propose a simple Extended Hirshfeld (Hirshfeld-E or HE) scheme to overcome this limitation. The performance of the new HE scheme is compared to four popular atoms-in-molecules schemes, using two tests involving a set of 248 silica clusters. These tests show that the new HE scheme provides an improved trade-off between the ESP accuracy and the transferability of the charges. The new scheme is a generalization of the Hirshfeld-I scheme and it is expected that its improvements are to a large extent applicable to molecular systems containing elements from the entire periodic table.

Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals

K. Lejaeghere, V. Van Speybroeck, G. Van Oost, S. Cottenier
Critical Reviews in Solid State and Materials Sciences
39 (1), 1-24
2014
A1

Abstract 

Predictions of observable properties by density-functional theory calculations (DFT) are used increasingly often by experimental condensed-matter physicists and materials engineers as data. These predictions are used to analyze recent measurements, or to plan future experiments in a rational way. Increasingly more experimental scientists in these fields therefore face the natural question: what is the expected error for such a first-principles prediction? Information and experience about this question is implicitly available in the computational community, scattered over two decades of literature. The present review aims to summarize and quantify this implicit knowledge. This eventually leads to a practical protocol that allows any scientist -- experimental or theoretical -- to determine justifiable error estimates for many basic property predictions, without having to perform additional DFT calculations.

A central role is played by a large and diverse test set of crystalline solids, containing all ground-state elemental crystals (except most lanthanides). For several properties of each crystal, the difference between DFT results and experimental values is assessed. We discuss trends in these deviations and review explanations suggested in the literature.

A prerequisite for such an error analysis is that different implementations of the same first-principles formalism provide the same predictions. Therefore, the reproducibility of predictions across several mainstream methods and codes is discussed too. A quality factor Delta expresses the spread in predictions from two distinct DFT implementations by a single number. To compare the PAW method to the highly accurate APW+lo approach, a code assessment of VASP and GPAW (PAW) with respect to WIEN2k (APW+lo) yields Delta-values of 1.8 and 3.3 meV/atom, respectively. In both cases the PAW potentials recommended by the respective codes have been used. These differences are an order of magnitude smaller than the typical difference with experiment, and therefore predictions by APW+lo and PAW are for practical purposes identical.

Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34

K. De Wispelaere, K. Hemelsoet, M. Waroquier, V. Van Speybroeck
Journal of Catalysis
305, 76-80
2013
A1

Abstract 

The methanol to olefins process is an alternative for oil-based production of ethene and propene. However, detailed information on the reaction mechanisms of olefin formation in different zeolite is lacking. Herein a first principle kinetic study allows elucidating the importance of a side-chain mechanism during methanol conversion in H-SAPO-34. Starting from the experimentally observed hexamethylbenzene, a full low-barrier catalytic cycle for ethene and propene formation is found. The olefin elimination steps exhibit low free energy barriers due to a subtle interplay between an sp3 carbon center of the organic intermediate, stabilizing non-bonding interactions and assisting water molecules in the zeolite material.

Open Access version available at UGent repository

Pages

Subscribe to RSS - V. Van Speybroeck