V. Van Speybroeck

Quasi-1D physics in Metal-Organic Frameworks: MIL-47(V) from first principles

D.E.P. Vanpoucke, J. Jaeken, S. De Baerdemacker, K. Lejaeghere, V. Van Speybroeck
Beilstein Journal of Nanotechnology
5, 1738–1748
2014
A1

Abstract 

The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials

Open Access version available at UGent repository

Triazolinediones enabling ultrafast and reversible click chemistry for facile design of healable and reshapable polymers

S. Billiet, K. De Bruycker, F. Driessen, H. Goossens, V. Van Speybroeck, J. Winne, F. Du Prez
Nature Chemistry
6 (9), 815-821
2014
A1

Abstract 

With its focus on synthetic reactions that are highly specific and reliable, ‘click’ chemistry has become a valuable tool for many scientific research areas and applications. Combining the modular, covalently bonded nature of click-chemistry linkages with an ability to reverse these linkages and reuse the constituent reactants in another click reaction, however, is a feature that is not found in most click reactions. Here we show that triazolinedione compounds can be used in click-chemistry applications. We present examples of simple and ultrafast macromolecular functionalization, polymer–polymer linking and polymer crosslinking under ambient conditions without the need for a catalyst. Moreover, when triazolinediones are combined with indole reaction partners, the reverse reaction can also be induced at elevated temperatures, and the triazolinedione reacted with a different reaction partner, reversibly or irreversibly dependent on its exact nature. We have used this ‘transclick’ reaction to introduce thermoreversible links into polyurethane and polymethacrylate materials, which allows dynamic polymer-network healing, reshaping and recycling.

Communication: DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn(Salen)

S. Wouters, T. Bogaerts, P. Van der Voort, V. Van Speybroeck, D. Van Neck
Journal of Chemical Physics
140, 241103
2014
A1

Abstract 

We use CheMPS2, our free open-source spin-adapted implementation of the density matrix renormalization group (DMRG) [S. Wouters, W. Poelmans, P. W. Ayers, and D. Van Neck, Comput. Phys. Commun. 185, 1501 (2014)], to study the lowest singlet, triplet, and quintet states of the oxo-Mn(Salen) complex. We describe how an initial approximate DMRG calculation in a large active space around the Fermi level can be used to obtain a good set of starting orbitals for subsequent complete-active-space or DMRG self-consistent field calculations. This procedure mitigates the need for a localization procedure, followed by a manual selection of the active space. Per multiplicity, the same active space of 28 electrons in 22 orbitals (28e, 22o) is obtained with the 6-31G∗ , cc-pVDZ, and ANO-RCC-VDZP basis sets (the latter with DKH2 scalar relativistic corrections). Our calculations provide new insight into the electronic structure of the quintet.

Open Access version available at UGent repository

Automated generation of radical species in crystalline carbohydrate using ab initio MD simulations

S.G. Aalbergsjø, E. Pauwels, A. Van Yperen-De Deyne, V. Van Speybroeck, E. Sagstuen
Physical Chemistry Chemical Physics (PCCP)
16 (32), 17196-17205
2014
A1

Abstract 

As the chemical structures of radiation damaged molecules may vary greatly from their undamaged counterparts, investigation and description of radiation damaged structures is commonly biased by the researcher. Radical formation from ionizing radiation in crystalline α-L-rhamnose monohydrate has been investigated using a new method where the selection of radical structures is unbiased by the researcher. The method is based on using ab initio molecular dynamics (MD) studies to investigate how ionization damage can form, change and move. Diversity in the radical production is gained by using different points on the potential energy surface of the intact crystal as starting points for the ionizations and letting the initial velocities of the nuclei after ionization be generated randomly. 160 ab initio MD runs produced 12 unique radical structures for investigation. Out of these, 7 of the potential products have never previously been discussed, and 3 products are found to match with radicals previously observed by electron magnetic resonance experiments

Open Access version available at UGent repository

Metal-organic frameworks as potential shock absorbers: the case of the highly flexible MIL-53(Al)

P.G. Yot, Z. Boudene, J. Macia, D. Granier, L. Vanduyfhuys, T. Verstraelen, V. Van Speybroeck, T. Devic, C. Serre, G. Ferey, N. Stock, G. Maurin
Chemical Communications
50, 9462-9464
2014
A1

Abstract 

The mechanical energy absorption ability of the highly flexible; MIL-53(Al) MOF material was explored using a combination of; experiments and molecular simulations. A pressure-induced transition; between the large pore and the closed pore forms of this solid; was revealed to be irreversible and associated with a relatively large; energy absorption capacity. Both features make MIL-53(Al) the first; potential MOF candidate for further use as a shock absorber.

Open Access version available at UGent repository

Generation of base catalytic activity in alkaline earth 1,3,5-benzenetricarboxylate MOFs via controlled selective decomposition of structural nitrate anions

P. Valvekens, D. Jonckheere, T. De Baerdemaeker, A. Kubarev, M. Vandichel, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, E. Smolders, D. Depla, D. Roeffaers, D. De Vos
Chemical Science
5 (11), 4517-4524
2014
A1

Abstract 

A new concept has been developed for generating highly dispersed base sites on metal-organic framework (MOF) lattices. The base catalytic activity of two alkaline earth MOFs, M2(BTC)(NO3)(DMF) (M = Ba or Sr, H3BTC = 1,3,5-benzenetricarboxylic acid, DMF = N,N-dimethylformamide) was studied as a function of their activation procedure. The catalytic activity in Knoevenagel condensation and Michael addition reactions was found to increase strongly with activation temperature. Physicochemical characterization using FTIR, 13C CP MAS NMR, PXRD, XPS, TGA-MS, SEM, EPR, N2 physisorption and nitrate content analysis shows that during activation, up to 85 % of the nitrate anions are selectively removed from the structure and replaced with other charge compensating anions such as O2-. The defect sites generated via this activation act as new strong basic sites within the catalyst structure. A fluorescence microscopic visualization of the activity convincingly proves that the activity is exclusively associated with the hexagonal crystals, and that reaction proceeds inside the crystal’s interior. Theoretical analysis of the Ba-material shows that the basicity of the proposed Ba2+-O2--Ba2+ motives is close to that of edge sites in BaO.

First principle chemical kinetics in zeolites: The Methanol-to-Olefin process as a case study

V. Van Speybroeck, K. De Wispelaere, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, M. Waroquier
Chemical Society Reviews
43 (21), 7326-7357
2014
A1

Abstract 

To optimally design next generation catalysts a thorough understanding of the chemical phenomena at the molecular scale is a prerequisite. Apart from qualitative knowledge on the reaction mechanism, it is also essential to be able to predict accurate rate constants. Molecular modeling has become a ubiquitous tool within the field of heterogeneous catalysis. Herein, we review current computational procedures to determine chemical kinetics from first principles, thus by using no experimental input and by modeling the catalyst and reacting species at the molecular level. Therefore, we use the methanol-to-olefin (MTO) process as a case study to illustrate the various theoretical concepts. This process is a showcase example where rational design of the catalyst was for a long time performed on the basis of trial and error, due to insufficient knowledge of the mechanism. For theoreticians the MTO process is particularly challenging as the catalyst has an inherent supramolecular nature, for which not only the Brønsted acidic site is important but also organic species, trapped in the zeolite pores, must be essentially present during active catalyst operation. All these aspects give rise to specific challenges for theoretical modeling. It is shown that present computational techniques have matured to a level where accurate enthalpy barriers and rate constants can be predicted for reactions occurring at a single active site. The comparison with experimental data such as apparent kinetic data for well-defined elementary reactions has become feasible as current computational techniques also allow predicting adsorption enthalpies with reasonable accuracy. Real catalysts are truly heterogeneous in a space- and time-like manner. Future theory developments should focus on extending our view towards phenomena occurring at longer length and time scales and integrating information from various scales towards a unified understanding of the catalyst. Within this respect molecular dynamics methods complemented with additional techniques to simulate rare events are now gradually making their entrance within zeolite catalysis. Recent applications have already given a flavor of the benefit of such techniques to simulate chemical reactions in complex molecular environments.

Open Access version available at UGent repository

Flexibility versus rigidity: what determines the stability of zeolite frameworks? A case study

E. Verheyen, L. Joos, C. Martineau, C.J. Dawson, C. Weidenthaler, W. Schmidt, R. Yuan, E. Breynaerts, V. Van Speybroeck, M. Waroquier, F. Taulelle, M.M.J. Treacy, J.A. Martens, C. Kirschhock
Materials Horizons
Vol. 1 , 582 - 587
2014
A1

Abstract 

All silica COK-14/-COK-14 with OKO topology is the first case of a zeolite which reversibly transforms from a systematically interrupted to a fully connected state and back. Analysis of the opening/closing behavior allowed the study of entropy and framework flexibility as determinants for the stability of zeolite topologies, which, until now, has been experimentally inaccessible. Interconversion of the all-silica COK-14 zeolite with fully connected OKO topology and its -COK-14 variant with systematic framework interruption was investigated using high-temperature XRD, thermogravimetric analysis, Si-29 MAS NMR, nitrogen adsorption and a range of modelling techniques. Specific framework bonds in the OKO framework can be reversibly hydrolyzed and condensed. Structural silanols of the parent -COK-14, prepared by degermanation of the IM-12 zeolite, were condensed by heating at 923 K, and hydrolyzed again to the initial state by contacting the zeolite with warm water. Molecular modelling revealed an inversion of the relative stabilities for both variants depending on temperature and hydration. Condensation of the structural silanols in -COK-14 to COK-14 is entropy driven, mainly resulting from the release of water molecules. Framework reopening in the presence of water is spontaneous due to the high rigidity of the fully connected OKO framework. Isomorphous substitution was demonstrated as a viable option for stabilization of the fully connected OKO framework as this renders the closed framework flexible.

Insight into the Formation and Reactivity of Framework-Bound Methoxide Species in H-ZSM-5 from Static and Dynamic Molecular Simulations

J. Van der Mynsbrugge, S.L. Moors, K. De Wispelaere, V. Van Speybroeck
ChemCatChem
6 (7), 1906-1918
2014
A1

Abstract 

Framework-bound methoxides occur as intermediates in the stepwise mechanism for zeolite-catalyzed methylation reactions. Herein, the formation of methoxides from methanol or dimethyl ether in H-ZSM-5 is investigated by a combination of static and dynamic simulations, with particular focus on the effect of additional water and methanol molecules on the mechanism and kinetics. Metadynamics simulations allow partitioning the reaction path into distinct phases. Proton transfer from the zeolite to the reactants is found to be the rate-limiting phase in the methoxide formation. Additional methanol molecules only assist the proton transfer in the methoxide formation from methanol, whereas the reaction from dimethyl ether does not benefit from methanol assistance. Once formed, methoxides are found to be as reactive toward alkene methylation as methanol and dimethyl ether.

Metal-dioxidoterephthalate MOFs of the MOF-74 type: microporous basic catalysts with well-defined active sites

P. Valvekens, M. Vandichel, M. Waroquier, V. Van Speybroeck, D. De Vos
Journal of Catalysis
317, 1–10
2014
A1

Abstract 

The hybrid frameworks M2dobdc (dobdc4− = 2,5-dioxidoterephthalate, M2+ = Mg2+, Co2+, Ni2+, Cu2+ and Zn2+), commonly known as CPO-27 or MOF-74, are shown to be active catalysts in base-catalyzed reactions such as Knoevenagel condensations or Michael additions. Rather than utilizing N-functionalized linkers as a source of basicity, the intrinsic basicity of these materials arises from the presence of the phenolate oxygen atoms coordinated to the metal ions. The overall activity is due to a complex interplay of the basic properties of these structural phenolates and the reactant binding characteristics of the coordinatively unsaturated sites. The nature of the active site and the order of activity between the different M2dobdc materials were rationalized via computational efforts; the most active material, both in theory and in experiment, is the Ni-containing variant. The basicity of Ni2dobdc was experimentally proven by chemisorption of pyrrole and observation by IR spectroscopy.

Open Access version available at UGent repository

Pages

Subscribe to RSS - V. Van Speybroeck