H. Vrielinck

Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal-Organic Framework (COMOC-3)

Y-Y Liu, K. Leus, M. Grzywa, D. Weinberger, K. Strubbe, H. Vrielinck, R. Van Deun, D. Volkmer, V. Van Speybroeck, P. Van der Voort
European Journal of Inorganic Chemistry
(16) 2819 - 2827
2012
A1

Abstract 

A vanadium 2,6-naphthalenedicarboxylate, VIII(OH)(O2C–C10H6–CO2)·H2O, denoted as COMOC-3as (COMOC = Center for Ordered Materials, Organometallics and Catalysis, Ghent University), has been synthesized under hydrothermal conditions by means of both a solvothermal and a microwave synthesis procedure. The structure shows the topology of an aluminium 2,6-naphthalenedicarboxylate, the so-called MIL-69 (MIL = Materials of the Institute Lavoisier). After calcination at 250 °C in air, the VIII center was oxidized to VIV with the structure of VIVO(O2C–C10H6–CO2) (COMOC-3). The oxidation process was verified by cyclic voltammetry and EPR spectroscopy. The crystallinity was investigated by variable-temperature XRD. The title compound is stable against air and moisture. The catalytic performance of COMOC-3 was examined in the liquid-phase oxidation of cyclohexene. COMOC-3 exhibited similar catalytic performance to MIL-47 [VO(O2C–C6H4–CO2)]. The compound is reusable and maintains its catalytic activity through several runs.

Early-Stage Evolution of the EPR Spectrum of Crystalline Sucrose at Room Temperature after High-Dose X Irradiation

H. Vrielinck, H. De Cooman, Y. Karakirova, N.D. Yordanov, F. Callens
Radiation Research
172 (2), 226-233
2009
A1

Abstract 

X irradiation of sucrose single crystals at room temperature leads to the production of stable radicals, which give rise to the dosimetric electron paramagnetic resonance (EPR) signal. In the first few hours after irradiation, however, the shape of the EPR spectrum changes drastically. Based on two-dimensional field-frequency electron nuclear double resonance (FF-ENDOR) measurements, we demonstrate that, after high-dose (5 kGy) and high-dose-rate irradiation, several species with limited stability at room temperature are produced next to the stable radicals. For two of these species, the main characteristics could be determined. Analysis of the time evolution of the FF-ENDOR and room-temperature EPR spectra in the first few hours after irradiation leads to the conclusion that these meta-stable radicals mainly recombine into diamagnetic species, while transformation into stable radicals is at most a marginal process.

Determination of the g Tensors for the Dominant Stable Radicals in X-Irradiated β-d-Fructose Single Crystals

M.A. Tarpan, H. Vrielinck, H. De Cooman, F. Callens
Journal of Physical Chemistry A
113 (28), 7994-8000
2009
A1

Abstract 

In spite of recent successful identifications of radicals produced after X-ray irradiation at 10 and 77 K in β-d-fructose, the structure of the two stable radicals dominating the electron paramagnetic resonance (EPR) spectrum after room temperature irradiation is still unclear. Based on the agreement between proton hyperfine (HF) tensors obtained in electron nuclear double resonance (ENDOR) experiments and the results of single molecule density functional calculations, a model for these radicals, involving OH abstraction at the C2 ring position, had previously been proposed, but this assignment could not be confirmed when the radical was embedded in a crystal environment. In this paper, we therefore provide additional experimental information for these radicals. First, their g tensors are determined from angular dependent ENDOR-induced EPR experiments. The relatively large anisotropy of these tensors is indicative of delocalization of the unpaired electron onto a neighboring oxygen atom. Second, EPR spectra of fructose powders, selectively enriched in 13C on various ring positions, are presented, demonstrating that the HF interaction with the carbon atom C3 is larger than with the C2. Combining the g tensor, proton and 13C HF data, we conclude that the structure of the stable radicals differs strongly from that of intact molecules and that further advanced quantum chemical modeling will be required to fully identify them.

ENDOR and HYSCORE analysis and DFT-assisted identification of the third major stable radical in sucrose single crystals X-irradiated at room temperature

H. De Cooman, E. Pauwels, H. Vrielinck, E. Sagstuen, S. Van Doorslaer, F. Callens, M. Waroquier
Physical Chemistry Chemical Physics (PCCP)
11 (7), 1105-1114
2009
A1

Abstract 

Recently, the chemical structure of two of the three major stable radicals (T2 and T3) produced in sucrose single crystals by X-irradiation at room temperature was identified by comparing Density Functional Theory (DFT) calculations of Electron Magnetic Resonance parameters with experimental results [H. De Cooman, E. Pauwels, H. Vrielinck, E. Sagstuen, F. Callens and M. Waroquier, J. Phys. Chem. B, 2008, 112, 7298–7307]. Ambiguities concerning an unusual proton hyperfine coupling (HFC) tensor prevented the identification of the third major stable radical (T1). In the present work, experimental results of continuous wave Electron Nuclear Double Resonance experiments on sucrose single crystals and Hyperfine Sublevel Correlation Spectroscopy experiments on sucrose powder are presented that lift these remaining ambiguities. Using the final set of experimental HFC tensors and employing advanced DFT calculations, the chemical structure of the T1 radical is established: an allylic-type radical with approximately half of the spin density localised on the C2′ carbon of the fructose unit, involving glycosidic bond cleavage at the fructose side and a concerted formation of a carbonyl group at the C1′ carbon. The electronic structure of the T1 radical is discussed in more detail by means of additional DFT calculations, yielding a better understanding of the peculiar properties of the unusual proton HFC tensor mentioned above.

Schonland ambiguity in the electron nuclear double resonance analysis of hyperfine interactions: Principles and practice

H. Vrielinck, H. De Cooman, M.A. Tarpan, E. Sagstuen, M. Waroquier, F. Callens
Journal of Magnetic Resonance
195 (2), 196-205
2008
A1

Abstract 

For the analysis of the angular dependence of electron paramagnetic resonance (EPR) spectra of low-symmetry centres with S = 1/2 in three independent planes, it is well-established—but often overlooked—that an ambiguity may arise in the best-fit tensor result. We investigate here whether a corresponding ambiguity also arises when determining the hyperfine coupling (HFC) tensor for nuclei with I = 1/2 from angular dependent electron nuclear double resonance (ENDOR) measurements. It is shown via a perturbation treatment that for each set of MS ENDOR branches two best-fit tensors can be derived, but in general only one unique solution simultaneously fits both. The ambiguity thus only arises when experimental data of only one MS multiplet are used in analysis or in certain limiting cases. It is important to realise that the ambiguity occurs in the ENDOR frequencies and therefore the other best-fit result for an ENDOR determined tensor depends on various details of the ENDOR experiment: the MS state of the fitted transitions, the microwave frequency (or static magnetic field) in the ENDOR measurements and the rotation planes in which data have been collected. The results are of particular importance in the identification of radicals based on comparison of theoretical predictions of HFCs with published literature data. A procedure for obtaining the other best-fit result for an ENDOR determined tensor is outlined.

Identification and Conformational Study of Stable Radiation-Induced Defects in Sucrose Single Crystals using Density Functional Theory Calculations of Electron Magnetic Resonance Parameters

H. De Cooman, E. Pauwels, H. Vrielinck, E. Sagstuen, F. Callens, M. Waroquier
Journal of Physical Chemistry A
112 (24), 7298-7307
2008
A1

Abstract 

One of the major stable radiation-induced radicals in sucrose single crystals (radical T2) has been identified by means of density functional theory (DFT) calculations of electron magnetic resonance parameters. The radical is formed by a net glycosidic bond cleavage, giving rise to a glucose-centered radical with the major part of the spin density residing at the C1 carbon atom. A concerted formation of a carbonyl group at the C2 carbon accounts for the relatively small spin density at C1 and the enhanced g factor anisotropy of the radical, both well-known properties of this radical from several previous experimental investigations. The experimentally determined and DFT calculated proton hyperfine coupling tensors agree very well on all accounts. The influence of the exact geometrical configuration of the radical and its environment on the tensors is explored in an attempt to explain the occurrence and characteristics of radical T3, another major species that is most likely another conformation of T2. No definitive conclusions with regard to the actual structure of T3 could be arrived at from this study. However, the results indicate that, most likely, T3 is identical in chemical structure to T2 and that changes in the orientation of neighboring hydroxy groups or changes in the configuration of the neighboring fructose ring can probably not account for the type and size of the discrepancies between T2 and T3.

Radiation-induced defects in sucrose single crystals, revisited: A combined electron magnetic resonance and density functional theory study

H. De Cooman, E. Pauwels, H. Vrielinck, A. Dimitrova, N.D. Yordanov, E. Sagstuen, M. Waroquier, F. Callens
Spectrochimica Acta Part A (Mol. & biomol.)
69 (5), 1372-1383
2008
A1

Abstract 

The results are presented of an electron magnetic resonance analysis at 110 K of radiation-induced defects in sucrose single crystals X-irradiated at room temperature, yielding a total of nine 1H hyperfine coupling tensors assigned to three different radical species. Comparisons are made with results previously reported in the literature. By means of electron paramagnetic resonance and electron nuclear double resonance temperature variation scans, most of the discrepancies between the present 110 K study and a previous 295 K study by Sagstuen and co-workers are shown to originate from the temperature dependence of proton relaxation times and hyperfine coupling constants. Finally, radical models previously suggested in the literature are convincingly refuted by means of quantum chemical density functional theory calculations.

Combined Electron Magnetic Resonance and Density Functional Theory Study of 10 K X-Irradiated β-d-Fructose Single Crystals

M.A. Tarpan, E. Sagstuen, E. Pauwels, H. Vrielinck, M. Waroquier, F. Callens
Journal of Physical Chemistry A
112 (17) , 3898-3905
2008
A1

Abstract 

Primary free radical formations in fructose single crystals X-irradiated at 10 K were investigated at the same temperature using X-band Electron Paramagnetic Resonance (EPR), Electron Nuclear Double Resonance (ENDOR) and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three principal crystallographic planes and a fourth skewed plane allowed the unambiguous determination of five proton hyperfine coupling tensors. From the EIE studies, these hyperfine interactions were assigned to three different radicals, labeled T1, T1* and T2. For the T1 and T1* radicals, the close similarity in hyperfine coupling tensors suggests that they are due to the same type of radical stabilized in two slightly different geometrical conformations. Periodic density functional theory calculations were used to aid the identification of the structure of the radiation-induced radicals. For the T1/T1* radicals a C3 centered hydroxyalkyl radical model formed by a net H abstraction is proposed. The T2 radical is proposed to be a C5 centered hydroxyalkyl radical, formed by a net hydrogen abstraction. For both radicals, a very good agreement between calculated and experimental hyperfine coupling tensors was obtained.

EPR and ENDOR analysis of Fe3+ impurity centers in fluoroelpasolite lattices

F. Loncke, H. De Cooman, N.M. Khaidukov, H. Vrielinck, E. Goovaerts, P. Matthys, F. Callens
Physical Chemistry Chemical Physics (PCCP)
9 (39), 5320-5329
2007
A1

Abstract 

Fe3+ ions in hexagonal and cubic fluoroelpasolite crystals (AI2BIMIIIF6) have been investigated in a combined Electron Paramagnetic Resonance (EPR) and Electron Nuclear Double Resonance (ENDOR) study. A detailed analysis of the ENDOR spectra for the nearest 19F and 23Na shells in X (9.5 GHz) and Q band (34 GHz) allowed the complex EPR spectra to be disentangled and to determine the spin Hamiltonian parameters for the various S = 5/2 Fe3+ centres. W-band (95 GHz) EPR measurements as a function of temperature were performed to provide unambiguous evidence about the absolute signs of the Zero Field Splitting (ZFS) and SuperHyperFine (SHF) parameters for Fe3+ in Cs2NaAlF6 as already determined from the ENDOR work. It could be concluded that all principal 19F hyperfine values were positive, in agreement with earlier assignments in the literature for related systems. A comparative analysis of the 19F SHF data for Fe3+ at a perfectly octahedral site in the cubic crystal, and at two slightly trigonally distorted environments in the hexagonal crystals, indicates that the metal-to-ligand distance changes upon doping. The obtained set of parameters concerning one defect in various analogous environments can furthermore be used to test different methods of theoretical calculations for ZFS and SHF values.

X- (X = O, S) Ions in Alkali Halide Lattices through Density Functional Calculations. 1. Substitutional Defect Models

F. Stevens, H. Vrielinck, V. Van Speybroeck, E. Pauwels, F. Callens, M. Waroquier
Journal of Physical Chemistry B
110 (16), 8204–8212
2006
A1

Abstract 

Monoatomic X- (X = O, S) chalcogen centers in MZ (M = Na, K, Rb and Z = Cl, Br, I) alkali halide lattices are investigated within the framework of density functional theory with the principal aim to establish defect models. In electron paramagnetic resonance (EPR) experiments, X- defects with tetragonal, orthorhombic, and monoclinic g-tensor symmetry have been observed. In this paper, models in which X- replaces a single halide ion, with a next nearest neighbor and a nearest neighbor halide vacancy, are validated for the X- centers with tetragonal and orthorhombic symmetry, respectively. As such defect models are extended, the ability to reproduce experimental data is a stringent test for various computational approaches. Cluster in vacuo and embedded cluster schemes are used to calculate energy and EPR parameters for the two vacancy configurations. The final assignment of a defect structure is based on the qualitative and quantitative reproduction of experimental g and (super)hyperfine tensors.

Pages

Subscribe to RSS - H. Vrielinck