H. Vrielinck

Pyrene-Based Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production

J. Sun, H. S. Jena, C. Krishnaraj, K. S. Rawat, S. Abednatanzi, J. Chakraborty, A. Laemont, W. Liu, H. Chen, Y.-Y. Liu, K. Leus, H. Vrielinck, V. Van Speybroeck, P. Van der Voort
Angewandte Chemie int. Ed.


Four highly porous covalent organic frameworks (COFs) containing pyrene units were prepared and explored for photocatalytic H2O2 production. The experimental studies are complemented by density functional theory calculations, proving that the pyrene unit is more active for H2O2 production than the bipyridine and (diarylamino)benzene units reported previously. H2O2 decomposition experiments verified that the distribution of pyrene units over a large surface area of COFs plays an important role in catalytic performance. The Py-Py-COF, though contains more pyrene units than other COFs, induces a high H2O2 decomposition due to a dense concentration of pyrene in small proximity over a limited surface area. Therefore, a two-phase reaction system (water-benzyl alcohol) was employed to inhibit H2O2 decomposition. This is the first report on applying pyrene-based COFs in a two-phase system for photocatalytic H2O2 generation.

Identification of vanadium dopant sites in the metal–organic framework DUT-5(Al)

K. Maes, L.I.D.J. Martin, S. Khelifi, A.E.J. Hoffman, K. Leus, P. Van der Voort, E. Goovaerts, P.F. Smet, V. Van Speybroeck, F. Callens, H. Vrielinck
Physical Chemistry Chemical Physics (PCCP)
23, 7088-7100


Studying the structural environment of the VIV ions doped in the metal–organic framework (MOF) DUT-5(Al) ((AlIIIOH)BPDC) with electron paramagnetic resonance (EPR) reveals four different vanadium-related spectral components. The spin-Hamiltonian parameters are derived by analysis of X-, Q- and W-band powder EPR spectra. Complementary Q-band Electron Nuclear DOuble Resonance (ENDOR) experiments, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), X-Ray Diffraction (XRD) and Fourier Transform InfraRed (FTIR) measurements are performed to investigate the origin of these spectral components. Two spectral components with well resolved 51V hyperfine structure are visible, one corresponding to VIV=O substitution in a large (or open) pore and one to a narrow (or closed) pore variant of this MOF. Furthermore, a broad structureless Lorentzian line assigned to interacting vanadyl centers in each other's close neighborhood grows with increasing V-concentration. The last spectral component is best visible at low V-concentrations. We tentatively attribute it to (VIV=O)2+ linked with DMF or dimethylamine in the pores of the MOF. Simulations using these four spectral components convincingly reproduce the experimental spectra and allow to estimate the contribution of each vanadyl species as a function of V-concentration.

Elucidating the promotional effect of a covalent triazine framework in aerobic oxidation

S. Abednatanzi, P. Gohari Derakhshandeh, P. Tack, F. Muniz-Miranda, Y-Y Liu, J. Everaert, M. Meledina, F. Vanden Bussche, L. Vincze, C. Stevens, V. Van Speybroeck, H. Vrielinck, F. Callens, K. Leus, P. Van der Voort
Applied Catalysis B: Environmental
269, 118769

Elucidating the Vibrational Fingerprint of the Flexible Metal-Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach

A.E.J. Hoffman, L. Vanduyfhuys, I. Nevjestic, J. Wieme, S.M.J. Rogge, H. Depauw, P. Van der Voort, H. Vrielinck, V. Van Speybroeck
Journal of Physical Chemistry C
122, 5, 2734-2746


In this work mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal-organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed allowing for the identification of all IR active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable to determine the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition.

Open Access version available at UGent repository
Gold Open Access

Systematic study of the chemical and hydrothermal stability of selected "stable" Metal Organic Frameworks

K. Leus, T. Bogaerts, J. De Decker, H. Depauw, K. Hendrickx, H. Vrielinck, V. Van Speybroeck, P. Van der Voort
Microporous and Mesoporous Materials
226, 110-116


In this work, the hydrothermal and chemical stability towards acids, bases, air, water and peroxides of Metal Organic Frameworks, that are commonly considered to be stable, is presented. As a proof of stability both the crystallinity and porosity are measured before and after exposure to the stress test. The major part of the MOFs examined in this study showed a good hydrothermal stability except for the UiO-67, NH2-MIL-101 (Al) and CuBTC material. The chemical stability towards acids and bases show a similar tendency and an ordering can be proposed as: MIL-101(Cr)>NH2-UiO-66>UiO-66>UiO-67>NH2-MIL-53>MIL-53(Al)>ZIF-8>CuBTC>NH2-MIL-101(Al). In the tests with the H2O2 solution most materials behaved poorly, only the UiO-66 and NH2-UiO-66 framework showed a good stability.

Dominant stable radicals in irradiated sucrose: g tensors and contribution to the powder electron paramagnetic resonance spectrum

H. De Cooman, J. Keysabyl, J. Kusakovskij, A. Van Yperen-De Deyne, M. Waroquier, F. Callens, H. Vrielinck
Journal of Physical Chemistry B
117 (24), 7169–7178


Ionizing radiation induces a composite, multiline electron paramagnetic resonance (EPR) spectrum in sucrose, that is stable at room temperature and whose intensity is indicative of the radiation dose. Recently, the three radicals which dominate this spectrum were identified and their proton hyperfine tensors were accurately determined. Understanding the powder EPR spectrum of irradiated sucrose, however, also requires an accurate knowledge of the g tensors of these radicals. We extracted these tensors from angular dependent electron nuclear double resonance-induced EPR measurements at 110 K and 34 GHz. Powder spectrum simulations using this completed set of spin Hamiltonian parameters are in good agreement with experimentally recorded spectra in a wide temperature and frequency range. However, as-yet nonidentified radicals also contribute to the EPR spectra of irradiated sucrose in a non-negligible way.

Ti-functionalized NH2-MIL-47: an effective and stable epoxidation catalyst

K. Leus, G. Vanhaelewyn, T. Bogaerts, Y-Y Liu, F. Esquivel, F. Callens, G.B. Marin, V. Van Speybroeck, H. Vrielinck, P. Van der Voort
Catalysis Today
208, 97-105


In this paper, we describe the post-functionalization of a V-containing Metal-organic framework with TiO(acac)2 to create a bimetallic oxidation catalyst. The catalytic performance of this V/Ti-MOF was examined for the oxidation of cyclohexene using molecular oxygen as oxidant in combination with cyclohexanecarboxaldehyde as co-oxidant. A significantly higher cyclohexene conversion was observed for the bimetallic catalyst compared to the non-functionalized material. Moreover, the catalyst could be recycled at least 3 times without loss of activity and stability. No detectable leaching of V or Ti was noted. Electron paramagnetic resonance measurements were performed to monitor the fraction of V-ions in the catalyst in the +IV valence state. A reduction of this fraction by ∼17% after oxidation catalysis is observed, in agreement with the generally accepted mechanism for this type of reaction.

Room Temperature Radiation Products in Trehalose Single Crystals: EMR and DFT analysis

H. De Cooman, M. Tarpan, H. Vrielinck, M. Waroquier, F. Callens
Radiation Research
179 (3), 313-322


Radicals generated in trehalose single crystals by X radiation at room temperature were investigated by electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and ENDOR-induced EPR measurements, together with periodic density functional theory calculations. In the first days after irradiation, three radical species (I1, I2 and I3) were detected, two of which (I1 and I2) dominate the EPR spectrum and could be identified as H-abstracted species centered at C3′ (I1) and C2 (I2), the latter with additional formation of a carbonyl group at C3. Annealing the sample at 40°C for 3 days or storing it in ambient conditions for three months resulted in another, more stable EPR spectrum. Two major species could be characterized in this stage (S1 and S2), only one of which was tentatively identified as an H-abstracted, C2-centered species (S1). Our findings disagree with a previous EPR study [Gräslund and Löfroth (23)] on several accounts. This work stresses the need for caution when interpreting composite EPR spectra and thermally induced spectral changes of radiation-induced species, even in these relatively simple carbohydrates. It also provides further evidence that the pathways for radiation damage critically depend on the specific conformation of a molecule and its environment, but also that carbonyl group formation is a common process in the radiation chemistry of sugars and related compounds.

Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal-Organic Framework (COMOC-3)

Y-Y Liu, K. Leus, M. Grzywa, D. Weinberger, K. Strubbe, H. Vrielinck, R. Van Deun, D. Volkmer, V. Van Speybroeck, P. Van der Voort
European Journal of Inorganic Chemistry
(16) 2819 - 2827


A vanadium 2,6-naphthalenedicarboxylate, VIII(OH)(O2C–C10H6–CO2)·H2O, denoted as COMOC-3as (COMOC = Center for Ordered Materials, Organometallics and Catalysis, Ghent University), has been synthesized under hydrothermal conditions by means of both a solvothermal and a microwave synthesis procedure. The structure shows the topology of an aluminium 2,6-naphthalenedicarboxylate, the so-called MIL-69 (MIL = Materials of the Institute Lavoisier). After calcination at 250 °C in air, the VIII center was oxidized to VIV with the structure of VIVO(O2C–C10H6–CO2) (COMOC-3). The oxidation process was verified by cyclic voltammetry and EPR spectroscopy. The crystallinity was investigated by variable-temperature XRD. The title compound is stable against air and moisture. The catalytic performance of COMOC-3 was examined in the liquid-phase oxidation of cyclohexene. COMOC-3 exhibited similar catalytic performance to MIL-47 [VO(O2C–C6H4–CO2)]. The compound is reusable and maintains its catalytic activity through several runs.

Early-Stage Evolution of the EPR Spectrum of Crystalline Sucrose at Room Temperature after High-Dose X Irradiation

H. Vrielinck, H. De Cooman, Y. Karakirova, N.D. Yordanov, F. Callens
Radiation Research
172 (2), 226-233


X irradiation of sucrose single crystals at room temperature leads to the production of stable radicals, which give rise to the dosimetric electron paramagnetic resonance (EPR) signal. In the first few hours after irradiation, however, the shape of the EPR spectrum changes drastically. Based on two-dimensional field-frequency electron nuclear double resonance (FF-ENDOR) measurements, we demonstrate that, after high-dose (5 kGy) and high-dose-rate irradiation, several species with limited stability at room temperature are produced next to the stable radicals. For two of these species, the main characteristics could be determined. Analysis of the time evolution of the FF-ENDOR and room-temperature EPR spectra in the first few hours after irradiation leads to the conclusion that these meta-stable radicals mainly recombine into diamagnetic species, while transformation into stable radicals is at most a marginal process.


Subscribe to RSS - H. Vrielinck