C. Barbieri

Accuracy of the Faddeev random phase approximation for light atoms

C. Barbieri, D. Van Neck, M. Degroote
Physical Review A
85 (1) 012501
2012
A1

Abstract 

The accuracy of the Faddeev random phase approximation (FRPA) method is tested by evaluating total and ionization energies in the basis-set limit. A set of light atoms up to Ar is considered. Comparisons are made with the results of coupled-cluster singles and doubles (CCSD), with third-order algebraic diagrammatic construction [ADC(3)], and with the experiment. It is seen that even for two-electron systems, He and Be(2+), the inclusion of RPA effects leads to satisfactory results, and therefore it does not overcorrelate the ground state. The FRPA becomes progressively better for larger atomic numbers, where it gives approximate to 5 mH more correlation energy, and it shifts ionization potentials by 2-10 mH with respect to the similar ADC(3) method. The ionization potentials from FRPA tend to reduce the discrepancies with the experiment.

Open Access version available at UGent repository

Faddeev random phase approximation for molecules

M. Degroote, D. Van Neck, C. Barbieri
Computer Physics Communications
182 (9) 1995-1998
2011
A1

Abstract 

This paper presents the problem of Molecular Beam Epitaxy and Reflection High-Energy Electron Diffraction with the help of a unified, modern MDA approach. Model-Driven Architecture (MDA) constitutes a modern and unusually efficient method of improving the process of generating software. It was created at the beginning of the twenty-first century by the Object Management Group as an element of Model-Driven Development, a highly promoted trend in software engineering. In MDA a viewpoint on a system is a technique for abstraction using a selected set of architectural concepts and structuring rules, in order to focus on particular concerns within a system. In MDA, system design begins with defining the problem domain. Next, at a highly abstract level independent of the system and programming platform a Platform-Independent Model (PIM) is constructed as well as a general system specification. This specification is created with the help of Unified Modeling Language. The real implementation of the system is performed through the transformation of PIM to Platform-Specific Model (PSM). The essence of Model-Driven Architecture is the replacement of the twentieth century approach to programming, calling that "everything is an object, to the modern "everything is a model". (C) 2011 Elsevier B.V. All rights reserved.

Open Access version available at UGent repository

Ab-initio Green's Functions Calculations of Atoms

C. Barbieri, D. Van Neck
AIP Conference Proceedings
1120, 104-108
2009
A1

Abstract 

The Faddeev random phase approximation (FRPA) method is applied to calculate the ground state and ionization energies of simple atoms. First ionization energies agree with the experiment at the level of ~10 mH or less. Calculations with similar accuracy are expected to provide information required for developing the proposed quasiparticle-DFT method. ©2009 American Institute of Physics

Faddeev random-phase approximation for molecules

M. Degroote, D. Van Neck, C. Barbieri
Physical Review A
83, 042517
2011
A1

Abstract 

The Faddeev random-phase approximation is a Green’s function technique that makes use of Faddeev equations to couple the motion of a single electron to the two-particle–one-hole and two-hole–one-particle excitations. This method goes beyond the frequently used third-order algebraic diagrammatic construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are now described at the level of the random-phase approximation, which includes ground-state correlations, rather than at the Tamm-Dancoff approximation level, where ground-state correlations are excluded. Previously applied to atoms, this paper presents results for small molecules at equilibrium geometry. © 2011 American Physical Society

Open Access version available at UGent repository
Subscribe to RSS - C. Barbieri