S. Catak

Cation−π Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines

E. Van den Broeck, B. Verbraeken, K. Dedecker, P. Cnudde, L. Vanduyfhuys, T. Verstraelen, K. Van Hecke, V. V. Jerca, S. Catak, R. Hoogenboom, V. Van Speybroeck
Macromolecules
53, 10, 3832-3846
2020
A1

Abstract 

Cation–dipole interactions were previously shown to have a rate-enhancing effect on the cationic ring-opening polymerization (CROP) of 2-oxazolines bearing a side-chain ester functionality. In line with this, a similar rate enhancement—via intermolecular cation−π interactions—was anticipated to occur when π-bonds are introduced into the 2-oxazoline side-chains. Moreover, the incorporation of π-bonds allows for facile postfunctionalization of the resulting poly(2-oxazoline)s with double and triple bonds in the side-chains via various click reactions. Herein, a combined molecular modeling and experimental approach was used to study the CROP reaction rates of 2-oxazolines with side-chains having varying degrees of unsaturation and side-chain length. The presence of cation−π interactions and the influence of the degree of unsaturation were initially confirmed by means of regular molecular dynamics simulations on pentameric systems. Furthermore, a combination of enhanced molecular dynamics simulations, static calculations, and a thorough analysis of the noncovalent interactions was performed to unravel to what extent cation−π interactions alter the reaction kinetics. Additionally, the observed trends were confirmed also in the presence of acetonitrile as solvent, in which experimentally the polymerization is performed. Most intriguingly, we found only a limited effect on the intrinsic reaction kinetics of the CROP and a preorganization effect in the reactive complex region. The latter effect was established by the unsaturated side-chains and the cationic center through a complex interplay between cation−π, π–π, π–induced dipole, and cation–dipole interactions. These findings led us to propose a two-step mechanism comprised of an equilibration step and a CROP reaction step. The influence of the degree of unsaturation, through a preorganization effect, on the equilibration step was determined with the following trend for the polymerization rates: n-ButylOx < ButenOx < ButynOx ≥ PentynOx. The trend was experimentally confirmed by determining the polymerization rate constants.

Open Access version available at UGent repository
Gold Open Access

Use of 3-Hydroxy-4-(trifluoromethyl)azetidin-2-ones as Building Blocks for the Preparation of Trifluoromethyl-Containing Aminopropanes, 1,3-Oxazinan-2-ones, Aziridines, and 1,4-Dioxan-2-ones

H.D. Thi, G. Le Nhat Thuy, S. Catak, V. Van Speybroeck, T. Van Nguyen, M. D'Hooghe
Synthesis-Stuttgart
50, 1439-1456
2018
A1

Abstract 

3-Hydroxy- 4-(trifluoromethyl)azetidin- 2-ones were efficiently synthesized from the corresponding 3-benzyloxy-β-lactams and successfully transformed into 3-chloro- 4-(trifluoromethyl)azetidin-2- one building blocks. The latter chlorides were shown to be eligible precursors for the construction of novel CF 3 -containing aminopropanes, 1,3-oxazinanes, 1,3-oxazinan-2- ones and aziridines. In addition, 3-hydroxy- 4-(trifluoromethyl)azetidin- 2-ones proved to be interesting substrates for the synthesis of novel 3-[2,2,2- trifluoro-1-(arylamino)ethyl]-1,4- dioxan-2- ones via intramolecular cyclization of 3-(2- hydroxyethoxy)-β-lactam intermediates.

Theoretical Insight into the Regioselective Ring-Expansions of Bicyclic Aziridinium Ions

E. Birsen Boydas, G. Tanriver, M. D'Hooghe, H-J. Ha, V. Van Speybroeck, S. Catak
Organic & Biomolecular Chemistry
16 (5), 796-806
2018
A1

Abstract 

Transient bicyclic aziridinium ions are known to undergo ring-expansion reactions, paving the way to functionalized nitrogen-containing heterocycles. In this study, the regioselectivity observed in the ring-expansion reactions of 1-azoniabicyclo[n.1.0]alkanes was investigated from a computational viewpoint to study the ring-expansion pathways of two bicyclic systems with different ring sizes. Moreover, several nucleophiles leading to different experimental results were investigated. The effect of solvation was taken into account using both explicit and implicit solvent models. This theoretical rationalization provides valuable insight into the observed regioselectivity and may be used as a predictive tool in future studies.

Asymmetric synthesis of 3,4-disubstituted 2-(trifluoromethyl)pyrrolidines through rearrangement of chiral 2-(2,2,2-trifluoro-1-hydroxyethyl)azetidines

J. Dolfen, E. Birsen Boydas, V. Van Speybroeck, S. Catak, K. Van Hecke, M. D'Hooghe
Journal of Organic Chemistry
82 (19), 10092–10109
2017
A1

Abstract 

Enantiopure 4-formyl-β-lactams were deployed as synthons for the diastereoselective formation of chiral 2-(2,2,2-trifluoro-1-hydroxyethyl)azetidines via trifluoromethylation through aldehyde modification followed by reductive removal of the β-lactam carbonyl moiety. Subsequent treatment of the (in situ) activated 2-trifluoroethylated azetidines with a variety of nitrogen, oxygen, sulfur and fluorine nucleophiles afforded chiral 3,4-disubstituted 2-(trifluoromethyl)pyrrolidines in good to excellent yields (45-99%) and high diastereoselectivities (dr > 99/1, 1H NMR) via interception of bicyclic aziridinium intermediates. Furthermore, representative pyrrolidines were N,O-debenzylated in a selective way and used for further synthetic elaboration to produce e.g. a CF3-substituted 2-oxa-4,7-diazabicyclo[3.3.0]octan-3-one system.

Design of a thermally controlled sequence of triazolinedione-based click and transclick reactions

H.A. Houck, K. De Bruycker, S. Billiet, B. Dhanis, H. Goossens, S. Catak, V. Van Speybroeck, J.M. Winne, F. Du Prez
Chemical Science
8 (4), 3098-3108
2017
A1

Abstract 

The reaction of triazolinediones (TADs) and indoles is of particular interest for polymer chemistry applications, as it is a very fast and irreversible additive-free process at room temperature, but can be turned into a dynamic covalent bond forming process at elevated temperatures, giving a reliable bond exchange or ‘transclick’ reaction. In this paper, we report an in-depth study aimed at controlling the TAD – indole reversible click reactions through rational design of modified indole reaction partners. This has resulted in the identification of a novel class of easily accessible indole derivatives that give dynamic TAD-adduct formation at significantly lower temperatures. We further demonstrate that these new substrates can be used to design a directed cascade of click reactions of a functionalized TAD moiety from an initial indole reaction partner to a second indole, and finally to an irreversible reaction partner. This controlled sequence of click and transclick reactions of a single TAD reagent between three different substrates has been demonstrated both on small molecule and macromolecular level, and the factors that control the reversibility profiles have been rationalized and guided by mechanistic considerations supported by theoretical calculations.

Open Access version available at UGent repository
Green Open Access

Tandem addition of phosphite nucleophiles across unsaturated nitrogen-containing systems: mechanistic insights on regioselectivity

W. Debrouwer, D. Hertsen, T.S.A Heugebaert, E. Birsen Boydas, V. Van Speybroeck, S. Catak, C.V. Stevens
Journal of Organic Chemistry
82 (1), 188–201
2017
A1

Abstract 

The addition of phosphite nucleophiles across linear unsaturated imines is a powerful and atom-economical methodology for the synthesis of aminophosphonates. These products are of interest from both a biological and a synthetic point of view: they act as amino acid transition state analogs and Horner–Wadsworth–Emmons reagents, respectively. In this work the reaction between dialkyl trimethylsilyl phosphites and α,β,γ,δ-diunsaturated imines was evaluated as a continuation of our previous efforts in the field. As such, the first conjugate 1,6-addition of a phosphite nucleophile across a linear unsaturated N-containing system is reported herein. Theoretical calculations were performed to rationalize the observed regioselectivites and to shed light on the proposed mechanism.

Effect of Lewis acids on the stereoregularity of N,N-dimethyl acrylamide: A computational approach

T. Furuncuoğlu, B. Kura, S. Catak, H. Goossens, V. Van Speybroeck, M. Waroquier, V. Aviyente
European Polymer Journal
83, 67–76
2016
A1

Abstract 

In this study, the effect of Lewis acid coordination (ScCl3) in controlling the stereoregularity during the free radical polymerization of N,N-dimethyl acrylamide (DMAM) has been investigated by Density Functional Theory (DFT). Experimentally, ScCl3, Sc(OTf)3 and Yb(OTf)3 have been used to increase the isotactic percentage in the polymerization of another acrylamide derivative, N-isopropyl acrylamide (NIPAM) (Habaue et al., 2002). The relative orientation of the terminal and penultimate side chains is expected to determine the stereoregularity in free radical polymerization reactions (Noble et al., 2014). We have analyzed the mechanistic details of the propagation reaction by considering all coordination types of the Lewis acid to the propagating species. Calculations have shown the bridging of the Lewis acid between the terminal side chain and the monomer to be the most probable pathway, which is in favor of the pro-meso propagation during the free radical polymerization of DMAM. In this case, it is the bridging capacity of the catalyst along the less crowded direction that dictates the preference for isotacticity. Overall, the strategy suggested in this study can be easily used by experimentalists in their endeavour of choosing the catalysts in order to end-up with the desired stereoregulation of the polymer chain.

Influence of solvation and dynamics on the mechanism and kinetics of nucleophilic aromatic substitution reactions in liquid ammonia

S.L. Moors, B. Brigou, D. Hertsen, P. Balazs, P. Geerlings, V. Van Speybroeck, S. Catak, F. De Proft
Journal of Organic Chemistry
81 (4), 1635-1644
2016
A1

Abstract 

The role of the solvent and the influence of dynamics on the kinetics and mechanism of the SNAr reaction of several halonitrobenzenes in liquid ammonia, using both static calculations and dynamic ab initio molecular dynamics simulations, are investigated. A combination of metadynamics and committor analysis methods reveals how this reaction can change from a concerted, one-step mechanism in gas phase to a stepwise pathway, involving a metastable Meisenheimer complex, in liquid ammonia. This clearly establishes, among others, the important role of the solvent and highlights the fact that accurately treating solvation is of crucial importance to correctly unravel the reaction mechanism. It is indeed shown that H-bond formation of the reacting NH3 with the solvent drastically reduces the barrier of NH3 addition. The halide elimination step, however, is greatly facilitated by proton transfer from the reacting NH3 to the solvent. Furthermore, the free energy surface strongly depends on the halide substituent and the number of electron-withdrawing nitro substituents.

PPV Polymerization via the Gilch Route: Diradical Character of Monomers

J.D. Nikolic, S. Wouters, J. Romanova, A. Shimizu, B. Champagne, T. Junkers, D. Vanderzande, D. Van Neck, M. Waroquier, V. Van Speybroeck, S. Catak
Chemistry - A European Journal
21, 19176-19185
2015
A1

Abstract 

Despite various studies on the polymerization of poly(p-phenylene vinylene) (PPV) through different precursor routes, detailed mechanistic knowledge on the individual reaction steps and intermediates is still incomplete. The present study aims to gain more insight into the radical polymerization of PPV through the Gilch route. The initial steps of the polymerization involve the formation of a p-quinodimethane intermediate, which spontaneously self-initiates through a dimerization process leading to the formation of diradical species; chain propagation ensues on both sides of the diradical or chain termination occurs by the formation of side products, such as [2.2]paracyclophanes. Furthermore, different p-quinodimethane systems were assessed with respect to the size of their aromatic core as well as the presence of heteroatoms in/on the conjugated system. The nature of the aromatic core and the specific substituents alter the electronic structure of the p-quinodimethane monomers, affecting the mechanism of polymerization. The diradical character of the monomers has been investigated with several advanced methodologies, such as spin-projected UHF, CASSCF, CASPT2, and DMRG calculations. It was shown that larger aromatic cores led to a higher diradical character in the monomers, which in turn is proposed to cause rapid initiation.

Synthesis of poly(2-oxazoline)s with side chain methyl ester functionalities: Detailed understanding of copolymerization behavior of methyl ester containing monomers with 2-alkyl-2-oxazolines

P. Bouten, D. Hertsen, M. Vergaelen, B. Monnery, S. Catak, J. van Hest, V. Van Speybroeck, R. Hoogenboom
Journal of Polymer Science Part A: Polymer Chemistry
7 (17), 2711-2719
2015
A1

Abstract 

Poly(2-oxazoline)s with methyl ester functionalized side chains are interesting as they can undergo a direct amidation reaction or can be hydrolyzed to the carboxylic acid, making them versatile functional polymers for conjugation. In this work, detailed studies on the homo- and copolymerization kinetics of two methyl ester functionalized 2-oxazoline monomers with 2-methyl-2-oxazoline, 2-ethyl-2-oxazoline, and 2-n-propyl-2-oxazoline are reported. The homopolymerization of the methyl ester functionalized monomers is found to be faster compared to the alkyl monomers, while copolymerization unexpectedly reveals that the methyl ester containing monomers significantly accelerate the polymerization. A computational study confirms that methyl ester groups increase the electrophilicity of the living chain end, even if they are not directly attached to the terminal residue. Moreover, the electrophilicity of the living chain end is found to be more important than the nucleophilicity of the monomer in determining the rate of propagation. However, the monomer nucleophilicity can be correlated with the different rates of incorporation when two monomers compete for the same chain end, that is, in copolymerizations. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015

Pages

Subscribe to RSS - S. Catak