D.E.P. Vanpoucke

Modeling 1D structures on semiconductor surfaces: synergy of theory and experiment

D.E.P. Vanpoucke
Journal of Physics: Condensed Matter
26 (2014), 133001
2014
A1

Abstract 

Atomic scale nanowires attract enormous interest in a wide range of fields. On the one hand, due to their quasi-one-dimensional nature, they can act as an experimental testbed for exotic physics: Peierls instability, charge density waves, and Luttinger liquid behavior. On the other hand, due to their small size, they are of interest not only for future device applications in the micro-electronics industry, but also for applications regarding molecular electronics. This versatile nature makes them interesting systems to produce and study, but their size and growth conditions push both experimental production and theoretical modeling to their limits. In this review, modeling of atomic scale nanowires on semiconductor surfaces is discussed, focusing on the interplay between theory and experiment. The current state of modeling efforts on Pt- and Au-induced nanowires on Ge(001) is presented, indicating their similarities and differences. Recently discovered nanowire systems (Ir, Co, Sr) on the Ge(001) surface are also touched upon. The importance of scanning tunneling microscopy as a tool for direct comparison of theoretical and experimental data is shown, as is the power of density functional theory as an atomistic simulation approach. It becomes clear that complementary strengths of theoretical and experimental investigations are required for successful modeling of the atomistic nanowires, due to their complexity.

Open Access version available at UGent repository

Tetravalent doping of CeO2: The impact of valence electron character on group IV dopant influence

D.E.P. Vanpoucke, S. Cottenier, V. Van Speybroeck, I. Van Driessche, P. Bultinck
Journal of the American Ceramic Society
97 (1), 258-266
2014
A1

Abstract 

Fluorite CeO2 doped with group IV elements is studied within the DFT and DFT+U framework. Concentration dependent formation energies are calculated for Ce1−xZxO2 (Z= C, Si, Ge, Sn, Pb, Ti, Zr, Hf) with 0≤x≤0.25 and a roughly decreasing trend with ionic radius is observed. The influence of the valence and near valence electronic configuration is discussed, indicating the importance of filled d and f shells near the Fermi level for all properties investigated. A clearly different behavior of group IVa and IVb dopants is observed: the former are more suitable for surface modifications, the latter are more suitable for bulk modifications.\\ \indent For the entire set of group IV dopants, there exists an inverse relation between the change, due to doping, of the bulk modulus and the thermal expansion coefficients. Hirshfeld-I atomic charges show that charge transfer effects due to doping are limited to the nearest neighbor oxygen atoms.

New Functionalized Metal–Organic Frameworks MIL-47-X (X = −Cl, −Br, −CH3, −CF3, −OH, −OCH3): Synthesis, Characterization, and CO2 Adsorption Properties

S. Biswas, D.E.P. Vanpoucke, T. Verstraelen, M. Vandichel, S. Couck, K. Leus, Y-Y Liu, M. Waroquier, V. Van Speybroeck, J.F.M. Denayer, P. Van der Voort
Journal of Physical Chemistry C
117 (44), 22784–22796
2013
A1

Abstract 

Six new functionalized vanadium hydroxo terephthalates [VIII(OH)(BDC-X)]•n(guests) (MIL-47(VIII)-X-AS) (BDC = 1,4-benzenedicarboxylate; X = -Cl; -Br, -CH3, -CF3, -OH, -OCH3; AS = as-synthesized) along with the parent MIL-47 were synthesized under rapid microwave-assisted hydrothermal conditions (170 ºC, 30 min, 150 W). The unreacted H2BDC-X and/or occluded solvent molecules can be removed by thermal activation under vacuum leading to the empty-pore forms of the title compounds (MIL-47(VIV)-X). Except pristine MIL-47 (+III oxidation state), the vanadium atoms in all the evacuated functionalized solids stayed in +IV oxidation state. The phase purity of the compounds was ascertained by X-ray powder diffraction (XRPD), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, Raman, thermogravimetric (TG), and elemental analysis. The structural similarity of the filled and empty-pore forms of the functionalized compounds with the respective forms of parent MIL-47 was verified by cell parameter determination from XRPD data. TGA and temperature-dependent XRPD (TDXRPD) experiments in air atmosphere indicate high thermal stability in the range 330-385 ºC. All the thermally activated compounds exhibit significant microporosity (SLangmuir in the range 418-1104 m2 g-1), as verified by the N2 and CO2 sorption analysis. Among the six functionalized compounds, MIL-47(VIV)-OCH3 shows the highest CO2 uptake, demonstrating the determining role of functional groups on the CO2 sorption behaviour. For this compound and pristine MIL-47(VIV), Widom particle insertion simulations were performed based on ab initio calculated crystal structures. The theoretical Henry coefficients show a good agreement with the experimental values, and calculated isosurfaces for the local excess chemical potential indicate the enhanced CO2 affinity is due to two effects: (i) the interaction between the methoxy group and CO2 and (ii) the collapse of the MIL-47(VIV)-OCH3 framework.

Reply to ‘comment on “extending hirshfeld-I to bulk and periodic materials”’

D.E.P. Vanpoucke, I. Van Driessche, P. Bultinck
Journal of Computational Chemistry
Volume 34, Issue 5, pages 422-427
2013
A1
Published while none of the authors were employed at the CMM

Abstract 

The issues raised in the comment by Manz are addressed through the presentation of calculated atomic charges for NaF, NaCl, MgO, SrTiO3 , and La2Ce2O7 , using our previously presented method for calculating Hirshfeld-I charges in solids (Vanpoucke et al., J. Comput. Chem. doi: 10.1002/jcc.23088). It is shown that the use of pseudovalence charges is sufficient to retrieve the full all-electron Hirshfeld-I charges to good accuracy. Furthermore, we present timing results of different systems, containing up to over 200 atoms, underlining the relatively low cost for large systems. A number of theoretical issues are formulated, pointing out mainly that care must be taken when deriving new atoms in molecules methods based on “expectations” for atomic charges.

Open Access version available at UGent repository

Extending Hirshfeld-I to bulk and periodic materials

D.E.P. Vanpoucke, P. Bultinck, I. Van Driessche
Journal of Computational Chemistry
Volume 34, Issue 5, pages 405-417
2013
A1
Published while none of the authors were employed at the CMM

Abstract 

In this work, a method is described to extend the iterative Hirshfeld-I method, generally used for molecules, to periodic systems. The implementation makes use of precalculated pseudopotential-based electron density distributions, and it is shown that high-quality results are obtained for both molecules and solids, such as ceria, diamond, and graphite. The use of grids containing (precalculated) electron densities makes the implementation independent of the solid state or quantum chemical code used for studying the system. The extension described here allows for easy calculation of atomic charges and charge transfer in periodic and bulk systems. The conceptual issue of obtaining reference densities for anions is discussed, and the delocalization problem for anionic reference densities originating from the use of a plane wave basis set is identified and handled.

Open Access version available at UGent repository

Pages

Subscribe to RSS - D.E.P. Vanpoucke