JACS (Journal of the American Chemical Society)

Controlling the Size of Hot Injection Made Nanocrystals by Manipulating the Diffusion Coefficient of the Solute

K. De Nolf, R.K. Capek, S. Abé, M. Sluydts, Y. Jang, J.C. Martins, S. Cottenier, E. Lifshitz, Z. Hens
JACS (Journal of the American Chemical Society)
137 (7), 2495–2505
2015
A1

Abstract 

We investigate the relation between the chain length of ligands used and the size of the nanocrystals formed in the hot injection synthesis. With two different CdSe nanocrystal syntheses, we consistently find that longer chain carboxylic acids result in smaller nanocrystals with improved size dispersions. By combining a more in-depth experimental investigation with kinetic reaction simulations, we come to the conclusion that this size tuning is due to a change in the diffusion coefficient and the solubility of the solute. The relation between size tuning by the ligand chain length and the coordination of the solute by the ligands is further explored by expanding the study to amines and phosphine oxides. In line with the weak coordination of CdSe nanocrystals by amines, no influence of the chain length on the nanocrystals is found, whereas the size tuning brought about by phosphine oxides can be attributed to a solubility change. We conclude that the ligand chain length provides a practical handle to optimize the outcome of a hot injection synthesis in terms of size and size dispersion and can be used to probe the interaction between ligands and the actual solute.

Synthesis modulation as a tool to increase the catalytic activity of MOFs: the unique case of UiO-66(Zr)

F. Vermoortele, B. Bueken, G. Le Bars, B. Van de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. De Vos
JACS (Journal of the American Chemical Society)
135 (31), 11465–11468
2013
A1

Abstract 

The catalytic activity of the zirconium terephthalate UiO-66(Zr) can be drastically increased by using a modulation approach. The combined use of trifluoroacetic acid and HCl during the synthesis results in a highly crystalline material, with partial substitution of terephthalates by trifluoroacetate. Thermal activation of the material leads not only to dehydroxylation of the hexanuclear Zr cluster but also to post-synthetic removal of the trifluoroacetate groups, resulting in a more open framework with a large number of open sites. Consequently, the material is a highly active catalyst for several Lewis acid catalyzed reactions.

Unexpected Four-Membered over Six-Membered Ring Formation during the Synthesis of Azaheterocyclic Phosphonates: Experimental and Theoretical Evaluation

V. Van Speybroeck, K. Moonen, K. Hemelsoet, C.V. Stevens, M. Waroquier
JACS (Journal of the American Chemical Society)
128 (26), 8468-8478
2006
A1

Abstract 

The cyclization of functionalized aminophosphonates is studied on both experimental and theoretical grounds. In a recently described route to phosphono-β-lactams [Stevens C. V.; Vekemans, W.; Moonen, K.; Rammeloo, T. Tetrahedron Lett. 2003, 44, 1619], it was found that starting from an ambident allylic anion only four-membered rings were formed without any trace of six-membered lactams. New anion trapping experiments revealed that the γ-anion is highly reactive in intermolecular reactions. Ab initio calculations predict higher reaction barriers for the γ-anion due to restricted rotation about the C−N bond and due to highly strained transition states during ring closure. The sodium or lithium counterion, explicit dimethyl ether solvent molecules, and bulk solvent effects were properly taken into account at various levels of theory.

Efficient Use of Bifunctional Acid−Base Properties for Alkylammonium Formation in Amine-Substituted Zeolites

D. Lesthaeghe, V. Van Speybroeck, M. Waroquier
JACS (Journal of the American Chemical Society)
126 (30), 9162–9163
2004
A1

Abstract 

The formation of alkylammonium groups in amine-doped zeolites is studied using density functional theory on small clusters representing the chemically active site. The presence of both strong Lewis base and Brønsted acid sites leads to a significant lowering of reaction barriers as opposed to alkoxide formation in full-oxygen zeolites. Furthermore, amine-substituted zeolites suggest novel reaction pathways that are not solely centralized around the aluminum substitution but in which two tetrahedral sites are involved, maximizing use of the zeolitic acid site and its surroundings. An investigation of the proton mobility in these yet to be synthesized materials demonstrates the need for minimizing the amount of Al−NH−Si bridges, as to prevent protonation of the amine group.

Ab Initio and Experimental Study on Thermally Degradable Polycarbonates:  The Effect of Substituents on the Reaction Rates

V. Van Speybroeck, M. Waroquier, Y. Martele, E. Schacht
JACS (Journal of the American Chemical Society)
123 (43), 10650–10657
2001
A1

Abstract 

Thermal elimination reactions on polycarbonates are investigated from both theoretical and experimental points of view, to obtain insight into the microscopic aspects that influence the reaction mechanism and rates. In particular, attention is focused on the influence of the type of substituents in the polymer chain on the reaction rates. Ab initio density functional theory calculations are performed on a series of model compound systems for the polycarbonates under study, in particular carbonates differing by the groups attached at the α and β carbon atoms. Reactants, products, and transition states are optimized at the B3LYP/6-311g** level of theory. The structures of the activated complex give insight into the mechanistic details of this type of Ei elimination reactions. The Cα−O bond dissociates before the Cβ−H bond, developing some carbocation character in the transition state on the Cα atom. The kinematics of the thermal decomposition reactions have been studied by means of transition state theory by construction of the microscopic partition functions. It turns out that the rates of the Ei elimination reactions are increased by the presence of those substituents on the Cα and Cβ carbon atoms which are stabilizing the carbocation character in the transition state. In a second part, degradation temperatures have been experimentally measured for some polycarbonates through thermogravimetric analysis. It is investigated whether the relative rates of the model compound carbonate systems are representative of the behavior of the thermal degradation temperatures in polycarbonates. The study as presented here proves that ab initio calculations on small model systems, which are representative for the active area of the degradation process in polycarbonates, can provide insight into the principal ingredients that govern the reaction rates.

First principle kinetic studies of zeolite-catalyzed methylation reactions

V. Van Speybroeck, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, D. Lesthaeghe, A. Ghysels, G.B. Marin, M. Waroquier
JACS (Journal of the American Chemical Society)
133 (4), 888–899
2011
A1

Abstract 

Methylations of ethene, propene, and butene by methanol over the acidic microporous H-ZSM-5 catalyst are studied by means of state of the art computational techniques, to derive Arrhenius plots and rate constants from first principles that can directly be compared with the experimental data. For these key elementary reactions in the methanol to hydrocarbons (MTH) process, direct kinetic data became available only recently [J. Catal.2005, 224, 115−123; J. Catal.2005, 234, 385−400]. At 350 °C, apparent activation energies of 103, 69, and 45 kJ/mol and rate constants of 2.6 × 10−4, 4.5 × 10−3, and 1.3 × 10−2 mol/(g h mbar) for ethene, propene, and butene were derived, giving following relative ratios for methylation kethene/kpropene/kbutene = 1:17:50. In this work, rate constants including pre-exponential factors are calculated which give very good agreement with the experimental data: apparent activation energies of 94, 62, and 37 kJ/mol for ethene, propene, and butene are found, and relative ratios of methylation kethene/kpropene/kbutene = 1:23:763. The entropies of gas phase alkenes are underestimated in the harmonic oscillator approximation due to the occurrence of internal rotations. These low vibrational modes were substituted by manually constructed partition functions. Overall, the absolute reaction rates can be calculated with near chemical accuracy, and qualitative trends are very well reproduced. In addition, the proposed scheme is computationally very efficient and constitutes significant progress in kinetic modeling of reactions in heterogeneous catalysis.

Pages

Subscribe to RSS - JACS (Journal of the American Chemical Society)