"Uncovering radiation chemistry in the solid state through periodic density-functional calculations: confrontation with experimental results and beyond" in Applications of EPR in Radiation Research (Eds. A. Lund, M. Shiotani)




Short content 

Three questions are crucial to unravel the radiation chemistry of any solid-state molecular system: what is the structure of the radicals formed, how are they formed and why? Molecular modeling methods based on Density Functional Theory – in confrontation with experimental Electron Paramagnetic Resonance (EPR) results – can help in finding an answer to all three questions. In this contri-bution, one view on how to perform such computational research is presented, with emphasis on the application of a periodic approach to biomolecules such as amino acids and carbohydrates. General strategies are outlined and common pit-falls are indicated. Topics include: effect of level of theory, model space and tem-perature on calculated EPR properties, formation mechanisms of radiation-induced radicals, and reaction path simulations for radiochemical transformations. In three case studies, these principles are applied to several radiation-induced radi-cals of sucrose.